
Parallelizing by Smart Tiling

Sergii Sushko

Dept. of Modelling and

Econometrics

Pukhov Institute for Modeling

in Energy Engineering of NASU

Kyiv, Ukraine

sergii.sushko@gmail.com

Alexander Chemeris

Dept. of Modelling and

Econometrics

Pukhov Institute for Modeling

in Energy Engineering of NASU

Kyiv, Ukraine

a.a.chemeris@gmail.com

Svetlana Reznikova

Dept. of Modelling and

Econometrics

Pukhov Institute for Modeling

in Energy Engineering of NASU

Kyiv, Ukraine

svetlana.reznikova@gmail.com

Abstract. The paper is devoted to the methods of

automatic parallelization and software optimization. The

authors focus on parallelizing of computational loops.

The problem of quickly choosing a partitioning method

and determining its parameters is an urgent task. Its

solution provides a reduction in software’s execution

time for computing systems with multiprocessor

architecture. To build an automated system for

parallelizing programs, the authors propose to use

Discrete Particle Swarm Optimization Method as an

optimization method which allows to find a local or

global minimum of program execution time regarding

complicated relationship between tile sizes and execution

time. The paper proposes an approach to optimizing the

process of partitioning the iterative space of loop

operators using the methods of Swarm Intellect. It uses

partitioning by rectangular parts but has no fundamental

restrictions on its use for other types of partitioning

(triangles, parallelograms, rhombuses, etc.). Proposed

method is called Smart Tiling Method.

Keywords: parallel programs, program

parallelization, loop parallelization, particle swarm

optimization, tiling, smart tiling

I. INTRODUCTION

Hardware and software are constantly being
improved during entire period of development of
computer technologies. At the same time with an
extensive type of development also an intensive type of
development is used. Considerable attention is paid to
more efficient usage of available resources. For
example, more efficient usage of resources of data
center can have a significant impact on energy
consumption. Thereby, an amount of electricity which
is required for air condition and as a result an amount of
financial costs will reduce. Effective usage of mobile
devices allows to work longer without recharging and
to use a hardware with better computing capabilities.
Effective usage of embedded systems allows to expand
of functionality and service capabilities of devices.

Computational efficiency is a multifactorial
characteristic. First, it is a measure of ability of

hardware and compiler to implement high-level source
code [1]. Second, computational efficiency can be
defined as a fraction of actual processing performance
relatively to peak processing performance available for
given hardware. Third, the computational efficiency is
based on efficiency of algorithms used by software.
These factors can be applied to all computing systems –
PCs, servers [2, 3], mobile devices [4], FPGAs [5],
controllers, embedded systems [6] and so on.

Computational efficiency is also considered in
context of integration of computational hardware. For
example, estimates of effectiveness of various options
for creating of complex of computing facilities as
system with predefined composition of equipment are
given in [7]. The author considers such indicator as a
coefficient of decrease of real performance which
characterizes cost of computing performance for
organizing of common work of computers or
processors.

𝐾𝑘 =
𝑃

∑ 𝑉𝑖
𝑁
𝑖=1

, (1)

where Vi is effective performance of i-th computing

device for individual functioning and specific class of
problems; P — same parameter for whole system; N –
number of computers or processors.

Efficiency of implementation of a certain algorithm
or class of algorithms of computational system is almost
completely determined by relation of structure of
chosen algorithm and by structure of a system. For
practical usage of computing systems, a flexibility of
logical structure of algorithm and its ability to transform
become especially important.

II. THE PROBLEM OF LOOP PARALLELIZATION

In operator of computational loop which consists of
𝑛 nested loops, a set of distance vectors is approximated
by an integer number l from the interval [1, 𝑛] ∪ {∞},
which is defined as the largest integer such that the first
l–1 components of distance vectors are zeros.
Dependence at level 𝑙 ≤ 𝑛 means that dependence is
found on level l of nested loops, that is, on given

9

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

iteration of l–1 outer loops. In this case, dependence
between iteration dependence and such dependences are
called loop-carried on l level. If 𝑙 = ∞ , then
dependence occurs inside of body of loop between two
different operators. Such dependencies are called loop-
independent. Value l is called level of dependence.
Analysis of computational loops, each of which is
defined by its own index variable, yields a set of index
variables which creates an index vector of nested loops

𝐼 = (𝑖1, 𝑖2, 𝑖𝑛).

For any loop in which index of loop I changes from
L to U with a step S, an iteration number i is equal to the
value (𝐼 − 𝐿 + 𝑆)/𝑆, where I is index value for this
iteration [7].

For n nested loops, iteration vector I for innermost
loop is a vector containing an integer number of
iterations for each loop in order of nested loop. In other
words, iteration number of a multidimensional nested
loop is determined in accordance with the form
𝐼 = (𝑖1, 𝑖2 , 𝑖𝑛) , where 𝑖𝑘, 1≤𝑘≤𝑛, is a loop
iteration number for nested level k.

Definition. Iteration space is a set of all integer
vectors 𝐼 = (𝑖1, 𝑖2, 𝑖𝑛) which satisfies the inequality:

U , = 1.. .i i iL x i n , (2)

Inequality (2) defines boundaries of loop which limit
iteration space by a convex polytope.

Thus, a model for representing of iteration space is
defined, which consists of constraints that define
boundaries of space, a set of nodes that corresponds to
loop iteration, and a set of dependencies between
iterations. Such model of iteration space which
represents it as a convex polyhedron, is called a
polyhedral model [8].

Task of parallelization is to divide iteration space
into separate blocks, under which following conditions
should be met, if possible:

1) compliance with structure of computing system,
for example, take into account architecture and number
of processors;

2) ensure of same loading on system processors;

3) minimize connections between blocks of space,
ensuring their parallel execution.

Considering variety of approaches for modification
of computational loops, tiling method and its
modifications should be noted. This method introduces
additional loops which break entire iteration space into
small blocks so called tiles. Calculations are performed
first for each tile. Tile size is chosen in each case
individually. This approach improves data locality
which leads to more efficient use of cache and internal

registers of processor and this can reduce loading on
memory bus, faster computations and lower power
consumption.

In general, implementation of parallelization and
optimization process is performed by converters,
algorithms, methods that analyze a program code and
convert it to semantically equivalent version which is
more efficient by some set of optimization goals. It was
shown in [1] some code optimization problems are NP-
complete or even such which cannot be solved. In
practice, many of them are solved by heuristic methods
and give a result in a satisfactory processing time for
program code.

Conversion of software to minimize or maximize
some goal function, which in general form is
represented by expression (3):

𝑎𝑟𝑔𝑚𝑖𝑛
𝑥

𝑓(𝑥) ∈ {𝑥 |∀𝑦 ∶ 𝑓(𝑦) ≤ 𝑓(𝑥)}. (3)

Then, considering parallelization and software
optimization as a process of directed application or
selection of a finite number of methods with a finite set
of parameters, it can be described by the expression (4):

𝐹𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑓(𝑴𝑙
⃗⃗ ⃗⃗ ⃗, 𝑷𝑘

⃗⃗⃗⃗ ⃗)), (4)

where F is a target function, which can be one or several
parameters requiring improvement – reduction of
execution time, power consumption, program memory
size, data, etc.; M is a set of possible methods for
parallelization and optimization; P is a set of parameter
values for these methods.

Expression (4) means that for tiling of iteration
space, it is necessary to use several appropriate methods
with their own optimization parameters. The choice of
methods can be preselected (defined explicitly or set by
default) or determined by evaluating a code by using
various metrics.

Thus, process of dividing of iteration space into
separate tiles is complicated by fact that a choice of a
set of specific methods and their specific parameters is
not predetermined and requires additional experiments
to test effectiveness and their combinations. Through
architectural features and limitations, selection of
methods and their parameters is unique for each
practical case. The authors propose Smart Tiling
Method which is based on an optimization method by
using swarm intelligence.

III. SMART TILING METHOD FOR LOOP

PARALLELIZATION

The development is based on a typical process that
is used in Pluto software package [8]. Its main stages are
shown in Fig. 1. This package includes several software
modules. These modules are used one by one. First one

10

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

creates a polyhedral model based on source code of
C/C++ languages, then Pluto package itself modifies
this polyhedral model according to the specified
methods of tiling and parallelization, then other
software modules simplify resulting model without
changing of lexicographic sequence, and at the last
stage program modules create a source code of C or
C++ programming languages according to obtained
model.

Fig. 1. Parallelization and optimization in Pluto

To efficiently divide of iteration space of loop
operators, it is necessary to choose appropriate method
that will give the maximum computational performance
and find corresponding parameters of this method. For
the approach which is shown in Fig. 1 it depends on
efficiency of partitioning methods implemented and on
experience of software developer. Nevertheless,
automation of this process brings its additional effects
on inefficiency of transformations. Therefore, it’s
necessary to investigate and develop some approaches
to implementation of parallelization and program
optimization.

Process of choosing of parameters for tiling of
iterative space is performed on the stage of modifying
of polyhedral model. The experiments presented in [9]
show complex dependence of computational efficiency
on tiling method and size of tiles into which space is
partitioned. After determination of minimum of this
function a method of tiling and tiles’ sizes can be
obtained.

The authors, in order to find the minimum of the goal
function, proposed to use optimization method of
swarm intelligence, namely Particle Swarm
Optimization Method [10]. By using of discrete version
of the method, the authors propose an intelligent method
for partitioning of iterative space of loop operators in
software programs. This will reduce searching time for
optimal solution when parallelization algorithms for
multiprocessor computing systems. The authors
performed the experiments for programs written in
C/C++, but there are no significant restrictions to use for
other languages.

Smart Tiling Method, as shown in Fig. 2, uses
Discrete Particle Swarm Optimization Method to find
the best tiling block sizes by iterative size choice. Next,
effectiveness of chosen tile sizes is evaluated by
compiling and measuring of execution time of computer
program. According to result of evaluation, parameters
of particle swarm are modified. This algorithm is quite
flexible and allows to use different versions of tiling
methods. There are possible two approaches for tiling –
standalone and with parallelization together.

Fig. 2. Smart Tiling Method based on Discrete Particle Swarm

Optimization Method

11

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

IV. THE EXPERIMENTS

For the evaluation of impact of various methods of
tiling of iteration space on execution time, a lot of
experiments were performed on various hardware
platforms. The first experiments were performed on a
single board computer Raspberry Pi 3 (quad-core ARM
Cortex-A53 CPU, 1.2 GHz, 32KB L1 cache, L2
512KB, 1GB LPDDR2 900 MHz memory). Another
series of experiments was verified on the desktop PC
with Intel processor (Intel® Core ™ i5-4670K quad-
core CPU, 3.4 GHz, 4x64KB L1 cache, L2 4x25.26KB,
L3 6MB, 16GB DDR3 1333 MHz memory). The
package of functions Polybench 4.1 [11] was chosen as
set of the test programs. This package contains about 30
small test programs written in C, in which various
classes of algorithms are implemented – operations with
vectors, matrices, linear algebra, signal processing.
Some experimental results are given in [9].

A series of experiments was performed to test an
efficiency of optimizing on execution time of test
programs by using of Smart Tiling Method. Smart
Tiling Method was used for several tiling methods of
Pluto package, namely “tile”, “innerpar”, “parallel”.
The obtained data were normalized taking into account
the initial execution time of the test programs and are
shown in Fig. 3 and 4 as diagrams.

Fig. 3. Relative execution time with “tile” method in comparison

with Smart Tiling Method

To accelerate preparation of software for computing
systems with multiprocessor architecture, usage of
automated parallelization and program optimization
systems is an urgent and promising task. Potential effect
on microprocessor control systems, IoT systems,
embedded systems, mobile devices, and so on should be
emphasized.

Fig. 4. Relative execution time with “tile”, “innerpar” and

“parallel” methods in comparison with Smart Tiling Method

Polyhedral model for representing of iteration space
of loop operators is formed by a system of constraints
on loop variables and is N-dimensional convex
polyhedron. This is of many approaches to analysis and
parallelization of program loop operators. It is
promising for building an effective system for
parallelizing of loop parts of algorithms.

V. CONCLUSIONS

Analysis of methods for dividing of iteration space
into parts or tiling method shows a complex dependence
of program execution time and, thus, computational
efficiency on parameters of tiling. Usage of
optimization methods to find minimum of goal function
makes it possible to speed up a process of program
parallelization. For this Smart Tiling Method based on
Discrete Particle Swarm Optimization Method is
proposed. The method allows to speed up searching a
solution by choosing the parameters of tiling method.
This allows to improve performance of programs due to
better choosing of parameters and thus faster program
execution. Experiments show the effectiveness of the
method for 2-dimensional case. For certain classes of
problems, it’s possible to get up to 15 times
improvement in performance.

The developed method for optimizing of partitioning
of iteration space of program loop operators, which the
authors investigated for the 2-dimensional case of tiling
of iteration space into rectangular parts, has no
fundamental restrictions on its to use for other types of
partition (triangles, parallelograms, rhombuses, etc.).

REFERENCES

[1] V. V. Voevodin, V. V. Voevodin, Parallel computing, St.
Petersburg, BHV-Petersburg, 2002, 608 p. (in rus.)

[2] O. O. Druzhinina, R. N. Kvetny, Increasing the efficiency of
web servers with the use of time series forecasting technology
based on neural networks, Information technology and
computer engineering, 2013, № 1, pp. 15-21. (in ukr.)

12

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

[3] G. M. Lutskiy, I. S. Raizin, Increasing the efficiency of
clusters based on Infiniband, Bulletin of the University
"Ukraine", Informatics, computer science and cybernetics,
2011, № 8, pp. 133. (in rus.)

[4] P. Havinga, G. Smit, Low power systems design techniques
for mobile computers. Centre for Telematics and Information
Technology University of Twente, Enschede, 1997.

[5] I. A. Klimenko, Methods and means to increase the efficiency
of information processing in reconfigured computer systems
based on FPGA, Dr. Tech. Science thesis: 05.13.05. Kyiv,
2017, 377 p. (in ukr.)

[6] N. V. Borisova, L. V. Shabanova-Kushnarenko, Effective
resource management of embedded systems for real-time
computing, Information processing systems, 2018, № 1(152),
pp. 87-93. (in ukr)

[7] V. K. Dushin, Theoretical foundations of information
processes and systems, Moscow, Dashkov and Co., 2003,
pp. 348 (in rus).

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam,
Ponnuswamy Sadayappan A practical automatic polyhedral
parallelizer and locality optimizer, In Conference: PLDI '08:
Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, May
2008, ACM SIGPLAN Notices 43(6), DOI: 10.1145/
1375581.1375595

[9] S. Sushko, A. Chemeris, Dependency between Tiles’ Sizes and
Program Execution Time, Proceedings: Reconfigurable
Ubiquitous Computing (RUC-2018), 12 October 2018,
Dzivnuv, Poland.

[10] A. Chemeris, S. Sushko, Usage of Discrete Particle Swarm
Optimization Method for the Searching of Optimal Tile Size,
2019 IEEE International Scientific-Practical Conference
Problems of Infocommunications, Science and Technology
(PIC S&T-2019), October 8-11, 2019, Kyiv, P. 202-206.

[11] L. N. Pouchet, PolyBench/C the Polyhedral Benchmark suite
http://web.cse.ohio-state.edu/~pouchet/software/polybench/
#description.

13

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

