
Graph-Based Recognition of High-Level Structures

in Transistor Circuits

Liudmila Cheremisinova

United Institute of Informatics Problems

of NAS of Belarus

Minsk, Belarus

cld@newman.bas-net.by

Dmitry Cheremisinov

United Institute of Informatics Problems

of NAS of Belarus

Minsk, Belarus

cher@newman.bas-net.by

Abstract. The problem of converting a flat transistor

circuit into a hierarchical circuit of logical gatesis

considered. The problem arises in layout versus

schematic verification and reverse engineering of

integrated circuits. The offered subcircuit recognition

algorithm collects transistors into gates without using

any predefined cell library. Graph-based methods are

proposed for solving some key problems of subcircuit

(CMOS gates) recognizing and logical network

extraction. The presented graph methods have been

implemented in C++ as a part of a decompilation

program, which was tested using practical transistor-

level circuits.

Keywords: VLSI layout verification, reverse

engineering, subcircuit extraction, graph matching

I. INTRODUCTION

Modern digital circuits contain up to a billion
primitive elements at the transistor level, and the
circuit complexity is rapidly increases while time-to-
market is imposed to decrease. Typically, digital
system designers move from a gate-level netlist to a
physical layout and mask and rarely proceed in the
opposite direction. However, in recent years the study
of reverse engineering of digital circuits has become
increasingly important.

The step toward raising the level of circuit
description is performed by decompiling transistor
circuit to replace its representation at a low (transistor)
level with a higher-level representation (logic gate
level). Tools for solving the task can be used for
supporting many tasks of designing integrated circuits,
such as functional verification [1], fault simulation and
automatic test pattern generation [2], hardware Trojan
detection [3], circuit reengineering [4], static timing
analysis, etc. At first, the main application of the
means of transistor circuit decompilation was
verification of the software implementations and
finding logical bugs. In recent years, the validation of
the integrity of untrusted design becomes a pressing
issue. It is recognized, reverse engineering techniques

can help detect hardware Trojans and malicious design
changes [3].

In the paper we consider the problem of extraction
of logical networks from transistor-level circuit netlists
in SPICE. In graph interpretation, the problem is
formulated as recognition of subgraphs corresponding
to logical gates and other subgraphs that are often
encountered in a given graph. The problem complexity
was thought to be tremendous, but VLSI transistor
netlists tend to be sparse enough and have the specific
structure, so runtimes did not grow unreasonably,
because a sensible data structures and data processing
methods were adopted.

There were many attempts to solve the problem of
extracting the hierarchy of large-scale subcircuits from
a transistor circuits for various VLSI technologies,
restrictions, solution methods. An overview of known
approaches can be found in [5, 6]. Some methods of
logical network extraction are based on structural
recognition and use rule-based methods in which
CMOS gate structures are recognized as channel
connected sequences of MOS transistors [5, 7]. The
other approaches [8] are based on mapping
transistorlevel circuit into a graph and treating
subcircuit pattern matching problem as subgraph
isomorphism one. Some methods suppose that
subgraphs to be found are known and the problem is
reducible to pattern recognition [8].

The proposed paper presents methods and
decompilation program for the most general case with
no predefined cell library. Moreover, the methods
make it possible to recognize subcircuits that
implement the same logical functions but are not
topologically isomorphic. The method is based on
solving well-known graph problems, which are
modified to process large transistor-level descriptions
in a short time. The presented graph methods have
been implemented in C++ as a part of a decompilation
program, which was tested using practical transistor-
level circuits.

14

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

II. TRANSISTOR CIRCUIT REPRESENTATION

The source and resulting circuit netlists are
presented in SPICE (Simulation Program with
Integrated Circuit Emphasis) format [2]. The main part
of the circuit netlist in the format is the list of
transistors, in which each transistor terminal (drain,
gate, source and substrate) is indicated by the label of
the net connecting it with the rest of the circuit: M
<name><nd><ng><ns><nb><model-name>,where M
and «model-name» are the title and the type of the
transistor; nd, ng, ns and nb are the labels of nets
connected with its drain, gate, source and substrate
terminals. For example, the transistor instance
description «mp 2 1 3 3 P» is an abbreviated notation
for the pairs (mp.d, 2), (mp.g, 1), (mp.s, 3), (mp.b, 3),
in which the name «mp» of p-MOS transistor is taken
out and the names of its terminals are omitted.

This netlist format defines an electrical circuit as
consisting of elements connected to each other by nets.
The convenient natural way to represent such circuits
is to use an undirected bipartite graph G = (V1, V2, E),

V1 V2 = , were vertices are divided into classes V1
and V2. The vertices fromV1 correspond to transistor
terminals and circuit ports (primary inputs and
outputs), and the vertices fromV2 correspond to nets,
i.e. connections between the terminals. Each edge

e  E has one end in V1 and the other in V2.

III. DEFINITIONS AND NOTATION

As stated above, transistor circuits are modeled as

bipartite graph G = (V1, V2, E), V1 V2 = .
Throughout this paper we assume that the graph is
undirected and vertex-colored, i.e., each vertex has a
color associated with it, that is drawn from a
predefined set of vertex colors L(V). Transistor-level
circuits made by CMOS technology have several types
of their nodes: terminals (drain, gate, source and
substrate) of n-MOS and p-MOS transistors,
input/output ports (external nets), power supply
terminals (Vdd and Gnd) and internal nets. So each
graph vertex corresponding to n-MOS terminal is
assigned by one of the first four colors, p-MOS
terminal is assigned by one of next four colors. Then
input/output ports, Vdd and Gnd nets, internal nets
have unique colors.

The graph corresponding to a MOS circuit is
connected (there is a path between any pair of vertices
in the graph) and sparse. Two bipartite colored graphs,
G1 = (V1

1, V2
1, E1) and G2 = (V1

2, V2
2, E2), are

isomorphicif there is a one-to-one mapping f: V1
1 V1

2

and V2
1 V2

2 between vertices of graphs such, that for

each v V1
1  V2

1L(v) = L(f(v)) and each edge in E1 is
mapped into a single edge in E2 and vice versa, i.e. (v,

u) E1iff(f(v),f(u)) E2.

Given graph Gs = (Vs, Es) is a subgraph of

G = (V, E)if Vs V and Es E. Two subgraphs G1 =
= (V1, E1) and G2 = (V2, E2) of a graph G are called
edge-disjoint if they do not share edges, i.e., they use

different sets of edges from E: E1 E2 = .

IV. GRAPH-BASED FORMULATION OF SUBCIRCUIT

EXTRACTION PROBLEM

The proposed subcircuit extraction application
begins with the construction of a graph model from the
SPICE description and hierarchical hash tables for
storing the syntax elements of the analyzed circuit [9].
After that, a preprocessing of the circuit is performed,
during which some standard fragments are searched
for. For example, identification of groups of identical
MOS transistors (with the same signals supplying their
terminals), connected in series or in parallel, pass gates
is fulfilled.

The goal of the transistor circuit decompilation is to
recognize subcircuits, which implement logic gates, or,
if we cannot, to split the circuit into sufficiently large
subcircuits that look like as logic gates In graph
interpretation the problem is solved by partitioning a
graph into sufficiently large edge-disjoint subgraphs in
such a way, that they can be partitioned into the
minimum number of classes of isomorphic graphs.

The algorithm realizes two-step process. First, it
uses rule-based structural approach in which CMOS
gate structures are recognized as channel connected
sequences of transistors. Then frequent subcircuit
pattern recognition is done to gather the rest transistors
into restricted number of identical functional blocks.
Finally, the set of all subcircuits, both implementing
and not implementing CMOS gates, is partitioned into
classes of topologically identical. Subcircuits of the
same class represent the same functional block in
resulting hierarchical description of two-level
decompiled circuit. In graph interpretation the task is
to classify subgraphs into classes of isomorphic.

As result of the mentioned steps performing, a
hierarchical mixed gate-block-transistor netlist is
generated. In the next step, the extraction of logic
network from the hierarchical transistor-level circuit is
done. That makes it possible to recognize more
complex elements than gates. In graph interpretation
the task is to extract (out of undirected graph)
connected subgraphs only with those vertices that
correspond to CMOS gates, and to convert the
resulting undirected subgraphs into oriented ones.

V. PARTITIONING A GRAPH INTO CONNECTED

SUBGRAPHS

In MOS transistor circuit, correct subcircuits are
among channel connected sequences of transistors. So,

15

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

first, the proposed method of the subcircuit recognition
algorithm uses the structural approach to divide the
transistor-level circuit into subcircuits, that are channel
connected sequences of transistors, as well as in [5, 7].
A group of channel connected transistors is a cluster
with three types of external connections: the cluster
inputs are fed only to the transistor gates; the outputs
are supplied only outside the cluster; there are
connections to Vdd and Gnd terminals. Fig. 1 shows
an example of grouping transistors into two channel
connected components.

Fig. 1. Channel connected components of MOS transistor circuit

The task of recognition of the clusters is solved on
a graph H, obtained from the introduced graph
G = (V1, V2, E) by removing gate terminals of
transistors; by introducing local Vdd and Gndnets
(with unit vertex degrees) instead of global ones and
by shorting the drain and source terminals for each
transistor.

In graph interpretation, channel connected groups
of MOS transistors correspond to edge-disjoint
connectivity component of the graph H. The search for
graph H connectivity components is done by using the
well-known depth-first search (DFS) algorithm that
starts at some arbitrary unconsidered vertex and
explores paths from it as far as possible along each
branch before backtracking. Reaching a backtracking
results in a new connectivity component. When
implementing the DFS algorithm, the initial graph
G = (V1, V2, E) is not transformed explicitly into the
graph H. Instead, the DFS algorithm was tuned to the
modification of data structure for storing the graph G.

VI. LOGIC GATE STRUCTURAL RECOGNITION

The CMOS gate consists of two blocks separated
by a connection net (output net) (Fig. 2). The first
block is formed by n-MOS transistors (pull-down
network), which are connected in series by their
source/drain terminals. The second block is formed by
p-MOS transistors (pull-up network), which are
connected in parallel. The pull-down network is placed
between the connection node and Gnd, and the pull-up
network between Vdd and the connection node. The
conductivities of the blocks are complementary, no

matter what the input signals (on transistors gates) are,
there is a valid path to output node either from Gnd or
from Vdd.

A CMOS gate is a group of channel connected
transistors; the opposite is not always true. The
necessary conditions for the group to belong to the
class of CMOS gates are the following ones: the only
chain connecting the pull-down and pull-up groups is
the output (connection) node; all paths from the
connection node go to Gnd or Vdd; pull-down and pull-
up networks have the same number of transistors and
implement mutually inverse functions. For instance, the
right group of channel connected transistors in Fig. 1 is
a NAND gate, but the left one is not.

Fig. 2. CMOS gate: its transistor structure and implemented

function

Thus, among channel connected components, there
are those that implement standard CMOS gates. Their
pull-down and pull-up networks have the same number
of transistors and implement mutually inverse
functions. The task is to find out such subcircuits and
their functionality.

In graph interpretation it consists in tracing all
paths between vertices corresponding to connection
node and Gnd (or Vdd). Each path gives a conjunction
of the conductivity variables fed to gate terminals of
the transistors from the path. The OR of all such
conjunctions yields disjunctive normal form (DNF) for
the expression. If the conductivity functions fn and fp of
pull-down or pull-up networks are complementary

(pn ff ) then the analyzed channel connected group

is a CMOS gate.

To classify CMOS gates extracted from the
transistor circuit, it is convenient to represent the
recognized functions as parenthesized algebraic
expressions. Such a form is constructed by the
algebraic factoring of the found DNF [9]. For the
CMOS gate in Fig. 2 we have

Vdd

GndGnd

Vdd

16

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

dcbadbcacfn )(, dcbadcdbaf p)(

and pn ff  . Thus, it is standard NOAO2 CMOS gate.

Transistor subcircuits of CMOS gates are divided
into classes of functionally identical according to the
formulae of implemented logic functions.

Often it is important to take into account not only
functional aspect but the topological one too. The
aspect requires dividing a class of functionally
equivalent CMOS gates into subclasses of
topologically equivalent ones. Some features of the
topological implementation of circuits at the transistor
level, which must be taken into account are given in
[9]. For example, we should take into account the
interchangeability of drain and source terminals of
MOS transistors which results in existence of
topologically different subcircuits that implement the
same logic function. For instance, there are four
subcircuit variants for a CMOS inverter. If, in a
decompiled circuit, all variants of a logic gate
subcircuit are represented by the same subcircuit, then
the decompiled and original circuits will be
topologically not isomorphic. Topological equivalence
of CMOS gate implementations can be established by
checking whether the corresponding graphs are
isomorphic or not.

VII. GRAPH ISOMORPHISM AND CANONICAL

LABELING

One of the key operations required to partition the
set of subgraphs into classes of isomorphic ones
consists in checking whether two subgraphs are
identical or not. One way of performing this check is
to perform a graph isomorphism operation. But in our
case, when many such checks are required for the
same set of subgraphs, a better way of performing the
task is vertex canonical labeling. It assigns to each
graph a unique code (a sequence of bits) that is
invariant on the ordering graph vertices. Comparing
canonical labels allows to partition the set of graphs
into classes of pairwise isomorphic graphs.

In general, calculating canonical labels is
computationally hard, but in our case, the complexity
of the task is reduced due to taking into account special
properties of subgraphs under classification: they are
vertex-colored, sparse and small enough. Canonical
labels of graphs, makes it is possible to sort them in a
unique and deterministic way.

Canonical labeling is done in an iterative manner in
the process of building a sequence of vertex partitions
that defines an ordering of the graph vertices. Assume
we have an ordered collection of subsets of the vertices
(V1, V2,…, Vk), whose union is V. They say that all
vertices from the same subset Vi have the same label i.

The set of these subsets represents the partition on the
set of graph vertices, constructed from the initial
partition that is specified by colors and degrees of
vertices.

At first, the number and sizes of these subsets Vi
must be the same for both compared graphs, i.e. the
graphs have identical partitions of the set V. Then we
repeatedly apply a relabeling step, which assigns to
each vertex v a classifier: C(v) = (n1, n2,…, nk), where
ni is the number of vertices in subset Vi that are
adjacent to v. Using these classifiers, each subset Vi can
be partitioned into subsets, where each subset should
include all vertices with the same classifier. These
subsets are lexicographically ordered according to their
classifiers. If a division has been fulfilled, then all
classifiers are recalculated (and vertices are relabeled).
No division will be done if all vertices in each subset
Vi have identical classifiers.

It is clear from the description that the essential
idea is to relabel vertices so that each new classifier
reflects information about a gradually increasing
region around the vertex. In an ideal situation, after
exhaustive applying the relabeling process, all subsets
in partition (V1, V2,…,Vk) will become singletons
(containing exactly one member), such a graph
canonical labeling is called discrete. If two compared
graphs have the same canonical labeling then they are
isomorphic with each other.

VIII. GRAPH-BASED SUBCIRCUIT

RECOGNITION METHOD

After structural recognition of logic gates and pass
gates there are two main unrecognized groups of
transistors. They are separate ungrouped transistors
and found channel connected components of MOS
transistors, which have been not recognized as CMOS
gates, so they are assigned to be pseudo gates. In our
case when there is no cell library, all we can do is to
classify remaining pseudo gates into classes of
pairwise identical subcircuits.

In graph interpretation the task consists in testing
isomorphism between graphs by means of comparing
their canonical labelings. To simplify the canonization
problem, the subcircuit graphs are complemented with
edges connecting all four terminals for each transistor.
As the prototype of the program for computing
canonical isomorphs, the program «bliss» [10] has
been modified that provides fast handling of large and
sparse graphs. The experiments with the program of
graph canonical labeling have shown that the
canonization of pseudo gate graphs results in
becoming discrete canonical labelings.

The graphs of pseudo gates with the same initial
partitions on the set of its vertices are considered one

17

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

by one. For each of them, a canonical labeling is
generated and a hash of the canonized graph is
computed. Graphs with equal hashes are isomorphic
and they are changed in a hierarchical SPICE
description with their canonical isomorph.

IX. LOGIC NETWORK CONSTRUCTION

The next step is to extract from the mixed circuit a
logical network which consists only of CMOS and
pass gates. In graph interpretation, logical network is
directed connected graph H = (W, A). The set of
vertices W is partitioned into three subsets: network
inputs and outputs, and internal vertices. Each vertex is
labeled with input or output variable, or, if it is internal
vertex, with the function realized by the corresponding

gate. A directed edge a = (u, v) A goes from the

source vertex u to the target vertex v (u, vW). Further
we consider that graph H = (W, A) is specified by the
adjacency list, i.e. an array D of the length |W| where
each entry D[i] is a pointer to a linked list of all the

out-neighbors of vertex wi W.

The connected graph H = (W, A) is extracted from
undirected bipartite graph G = (V1, V2, E)
corresponding to the object mixed circuit. Graph H is
contained in G as the connected component C that
includes only vertices corresponding to CMOS or pass
gates. There can be more than one such a component
in a graph G. Each undirected connected subgraph
corresponding to a connected component in an
undirected graph G is transformed into a directed
connected graph Hi = (Wi, Ai) of some logical network.
The transformation is carried out in the process of
traversing the subgraph along the paths in-going or
out-going from the vertices labeled as gates.

The search of the next connected component C
begins with any unconsidered vertex labeled as gate
and is done by the breadth-first search (BFS) method
considering only vertices labeled as gates. BFS allows
not only to find out a connected component C, but also
to get its topological sorting, which orders the vertices
so, that the ordering respects reachability. In other
words, if a vertex u is directly reachable from v, then

the edge (u, v) E generates (v, u)  A, and if the
vertex v belongs to the i-th graph rank then the vertex
u belongs to the (i+1)-thrank. The proposed method
provides to extract logic network that is ranked
lexicographically. From a lexicographically ordered
network of logical gates, it is easy to pass to the
formulas of logical equations that specify the output
functions of the network.

The next task connected with the logic network
extraction is to determine its primary inputs and
outputs. It is solved by considering fan-ins and fan-
outs for all vertices of the graph H = (W, A). If all

vertices from both fan-in and fan-out of some vertex

v W are labeled as gates then the vertex v is an
internal one. Non-internal vertices are referred to
primary inputs or primary outputs, depending on
which of the fan-in and fan-out sets contains a non-
internal vertex.

After the gate-level networks are extracted it is
possible to recognize more complex elements, than
gates, when a cell library is known.

X. CONCLUSION

In the paper we present graph-based methods for
solving the task of extracting gate-level circuits from
transistor-level descriptions for the most general case
when any predefined cell library of logic gates is
unknown. We have used well-known graph methods,
modifying them so that they process large data of
special types in a short time. The proposed methods
were implemented in C++ as a part of a decompilation
program. The program was tested using practical and
automatically designed transistor-level circuits. The
tested circuits had up to 100000 transistors. Some
results of experiments can be found in [11].

REFERENCES

[1] M. S. Abadir, J. Ferguson,“An improved layout verification
algorithm (LAVA)”, Proc. of European Automation Conf.,
1990, pp. 391–395.

[2] R. J. Baker,“CMOS circuit design, layout, and simulation”,
3rd ed., Wiley-IEEE Press, 2010.

[3] R. Torrance and D. James, “The state-of-the-art in IC reverse
engineering”, Proc. of the 11th Int’l. Workshop on
Cryptographic Hardware and Embedded Systems, CHES ’09,
2009, pp. 363–381.

[4] V. D. Hunt,“Reengineering: Leveraging the Power of
Integrated Product Development”, Wiley, 1993.

[5] L. Yang, C-J.R. Shi, “FROSTY: A program for fast
extraction of high-level structural representation from circuit
description for industrial CMOS circuits”,Integration, the
VLSI Journal, vol. 39(4), 2006, pp. 311–339.

[6] N. Zhang, D. C. Wunsch, F. Harary,“The subcircuit
extraction problem”, Proc. IEEE Intern. Workshop on
Behavioral Modeling and Simulation, 33(3),2003, pp. 23–25.

[7] “Logic Gate Recognition in Guardian LVS – Silvaco”. In
https://www.silvaco.com/content/appNotes/iccad/2-003_
LogicGates.pdf (access date: 4.1.2021).

[8] M. Ohlrich, C. Ebeling, E. Ginting, L. Sather, “SubGemini:
identifying subcircuits using a fast subgraph isomorphism
algorithm”, Proc. IEEE/ACM Design Automation Conf.,
1993, pp. 31–37.

[9] D. I. Cheremisinov, L. D. Cheremisinova, “Extracting a logic
gate network from a transistor-level CMOS circuit”, Russian
Microelectronics, vol. 48(3), 2019, pp. 187–196.

[10] T. Junttila, P. Kaski, “Engineering an efficient canonical
labeling tool for large and sparse graphs”, Proc. of the
Meeting on Algorithm Engineering & Expermiments, New
Orleans, Louisiana, January 6 July 2007, pp. 135–149.

[11] D. Cheremisinov, L. Cheremisinova,”Subcircuit pattern
recognition in transistor level circuits”, Pattern Recognition
and Image Analysis, vol. 30(2), 2020, pp. 160–169.

18

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

