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Abstract. Raw data in modern machine learning 

usually appear as similarities or dissimilarities between 

members of a limited set. A positive definite similarity 

matrix represents a limited set of elements immersed in 

some metric space with dimensionality right up to the 

matrix size with similarities considered as scalar 

products. In a case of a nonpositive definite similarity 

matrix, it needs metric correction of similarities to be 

considered as scalar products. The known discrete 

Karhunen-Loeve expansion is usually used to reduce the 

dimensionality of the similarity matrix by removing 

eigenvectors corresponded to negative eigenvalues. As a 

result, a new similarity matrix of the reduced size is 

calculated to immerse members of a limited set in a 

reduced space of eigenvectors corresponded only to 

positive eigenvalues with data dispersion reduced. 

According to an orthogonal decomposition based metric 

correction here, it is proposed not to remove, but change 

negative eigenvalues to become positive ones. As a 

result, such an optimal correction preserves the 

dimensionality and dispersion of raw data. 

Keywords: similarity matrix, orthogonal 

decomposition, eigenvector, eigenvalue, Karhunen-

Loeve expansion  

I. INTRODUCTION

Let raw data be presented by a similarity matrix of 
a set of a limited size. It is known, the positive definite 
square matrix has the positive determinant and their 
eigenvalues are positive too [1]. In this case the set 
members can be represented in some multidimensional 
coordinate space by vectors with distances and scalar 
products between them calculated based on the cosine 
theorem.  The end points of normalized vectors appear 
to be arranged on the hypersphere of the unit radius. 
For all positive scalar products all corresponding 
vectors are located in the positive quadrant of the 
coordinate space. 

This work is supported by RFBR Grants 20-07-00055, 

19-07-01178.

In the mathematical sense, paired comparisons must 
be immersed in some metric (Euclidean) space. This is 
the well-known theoretical problem [2]. Under modern 
conditions, this problem becomes practical in machine 
learning, data mining, image processing, etc. [3]. 

Nevertheless, empirical functions for paired 
comparisons are usually not correct mathematical 
functions of distances or similarities. Using of them 
usually results in so-called metric violations in the set 
configuration in some space. Hence, it needs to recover 
metric by correction of paired comparisons. Violations 
appear in negative eigenvalues of the similarity matrix 
of the set elements. 

We have developed before and today we are 
improving the novel end-to-end correction technology 
for optimal recovering of a violated metric. As a result, 
the positive definiteness of the corrected matrix is 
achieved [4–8]. 

The originality of such approach consists in the 
following. Indeed, each metric violation is connected 
with some member of the set which is supposed to be 
responsible for the violation. This approach differs 
from the well-known multidimensional scaling 
problem, since it doesn’t need to recover explicitly the 
feature space itself. 

In this paper, another approach is proposed based 
on the known Karhunen-Loeve expansion in terms of a 
system of orthogonal functions. It is known, we face 
the problem of the spectral decomposition of a square 
matrix based on their eigenvectors [1]. 

II. DECOMPOSITION OF A MATRIX OF SCALAR

PRODUCTS BASED ON ORTHOGONAL VECTORS

Let the set of n objects be represented by the 
normalized matrix ( , )S n n  of paired comparisons with 

elements 1iis  for the main diagonal and values 

0 1ijs  or 1 1ijs   for others.

The spectral decomposition of the nondegenerated 

matrix ( , )S n n  has the form ,TS A A   where 
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1( , ) ( ,... )nA n n  a a is the orthogonal matrix 
1TA A A A E   of eigenvectors-columns

1( ,... )T

i i nia aa , | | 1i a , ( , )E n n is the unity matrix, 

( , )n n  is the diagonal matrix of eigenvalues sorted in 

the decreasing order. 

It is known, the set represented by the matrix 
( , )S n n  is correctly immersed in some metric 

(Euclidean) space of the dimensionality not more than 
n, and the matrix itself consists of normalized scalar 
products of the set elements. 

It needs to note immediately, the raw data matrix 
( , )X n m and the corresponding feature space m with 

the dimensionality m n are not presented here. We
suppose they have been lost, otherwise scalar products

of objects ( , ) (1/ ) TS n n m XX  would be properly 

calculated. 

It is easy to see that TA SA   with tr tr S n  

based on the decomposition of the nondegenerated 
normalized matrix S  of scalar products of objects. 

III. CORRECTION OF METRIC VIOLATIONS

In data analysis problem, the decomposition in 
terms of orthogonal vectors usually used for a 

correlation matrix of features ( , ) (1/ ) TR m m m X X  

targeted to reduce the dimensionality of the space of 
eigenvectors of the matrix ( , )R m m  to the new value 

m m   in different tasks. 

In particular, the noncorrect matrix ( , )R m m  has 

negative eigenvalues. Hence, the projection of the 
initial data matrix ( , )X n m  in the new orthogonal 

subspace 'm  is usually used. The new dimensionality 
is defined only by positive eigenvalues 

1 '... 0m    

of the initial decomposition (it is the so-called discrete 
Karhunen-Loeve expansion [9]). The new correlation 
matrix ( , )m m    has the diagonal form, where 

1

m

i
tr m m




      . 

Note, such the projection requires the data matrix 
( , )X n m to get the new one ( , )X n m  . In this case, the

dispersion of raw data (the total dispersion of 
normalized features) is reduced to m m  . 

Unlike the classical approach, the spectral 
decomposition in our investigation is used for the set 
members represented only by scalar products or non-
negative similarities (scalar products in the positive 
quadrant of a metric space) ( , )S n n . It doesn’t matter, 

what they are: features or objects themselves. 

In a case of metric violations in the set 
configuration in hypothetical space (we have not it), 

the spectral decomposition TS A A   of the matrix 

( , )S n n  has negative eigenvalues. 

In this paper, it is proposed not to reduce initial 
data, but replace negative eigenvalues in the 
decomposition by the appropriate positive ones to get 

as a result the new matrix ( , )n n  of the same 

dimensionality.  After that, the matrix ( , )S n n  is 

recovered in the form of TS A A  . 

Note, the new matrix S  appears to be 
nonnormalized, since their diagonal elements appear to 

be more, than 1. Therefore, .tr tr S n   After the 

transformation ˆ /ij ij ii jjs s s s , the decomposition of 

the corrected matrix ˆ( , )S n n is specified as ˆ ˆ ˆˆ TS A A  , 

ˆˆtr tr S n   , where eigenvalues and eigenvectors 

take the final form. 

In fact, based on this approach any set of 
eigenvalues can be modified by any other values to 
eliminate not only negative eigenvalues. 

Note, based on such the approach, it is possible to 
formulate any suitable problems to find the 
corresponding set of eigenvalues for similarity 
matrices, for example, to provide the right level of the 
conditionality for the corrected matrix (we demonstrate 
it below), etc. 

Additionally, the raw similarity matrix can have 
other type of violations, where non-diagonal elements 
exceed diagonal ones by the module. In this case, the 
correction recovers the matrix too. Naturally, the raw 
matrix must be of the full rank. In other case, the 
matrix dimensionality needs to be reduced before the 
correction. 

IV. USING THE PROPOSED APPROACH

ON REAL DATA 

Let the correlation matrix (11,11)S  be given. It 

represents statistical interconnections between power 
of biorhythms of 11 frequencies in a brain like alpha-, 
beta-, and theta-rhythms in electroencephalograms.  

Psychologist V.D. Nebylytsin obtained such data 
[10] during his investigations of light-sound sensations
imposed by rhythms

1      0.562  0.568  0.152  0.347  0.250  0.264 -0.020 -0.212 -0.086 -0.076  
 0.562  1      0.784  0.057  0.196  0.218  0.009 -0.017 -0.002  0.163  0.284  
 0.568  0.784  1      0.288  0.475  0.264  0.066  0.144  0.114  0.228  0.151  
 0.152  0.057  0.288  1      0.686  0.293  0.034  0.048 -0.069 -0.064  0.175  
 0.347  0.196  0.475  0.686  1      0.429  0.070  0.152  0.036  0.028  0.216  
 0.250  0.218  0.264  0.293  0.429  1      0.788  0.197  0.154  0.109  0.035  
 0.264  0.009  0.066  0.034  0.070  0.788  1      0.109  0.054 -0.002 -0.018  
-0.020 -0.017  0.144  0.048  0.152  0.197  0.109  1      0.807  0.830  0.699 
-0.212 -0.002  0.114 -0.069  0.036  0.154  0.054  0.807  1      0.904  0.728 
-0.086  0.163  0.228 -0.064  0.028  0.109 -0.002  0.830  0.904  1      0.768 
 -0.076  0.284  0.151  0.175  0.216  0.035 -0.018  0.699  0.728  0.768  1

. 
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This matrix contains ten positive eigenvalues 
3.636340, 2.827085, 1.611613, 1.358204, 0.515165, 
0.412792, 0.278171,  0.164165,  0.151054,  0.069977, 
and the last negative eigenvalue -0.024566. We have 
already studied this matrix in order to correct it and 
determine the optimal conditionality based on the end-
to-end metric correction technology [6-8]. 

Replacing a negative eigenvalue with a practically 

zero value 510 gives, after normalization, eigenvalues 
3.629217, 2.821157, 1.605834, 1.355937, 0.514139, 
0.411444, 0.277702, 0.163727, 0.150881, 0.069932, 
0.00003, and the corrected matrix 

1       0.558  0.568  0.152  0.346  0.251  0.263 -0.021 -0.212  -0.086 -0.074 
0.558  1       0.776  0.058  0.198  0.212  0.013 -0.015 -0.0001  0.164 0.277 
0.568  0.776  1      0.286  0.472  0.267  0.063  0.142  0.112    0.227  0.154 
0.152  0.058  0.286  1      0.686  0.291  0.035  0.048 -0.069   -0.064  0.173 
0.346  0.198   0.472  0.686  1      0.425  0.072  0.153  0.037    0.029  0.212 
0.251  0.212   0.267  0.291  0.425  1      0.782  0.195  0.152    0.108  0.039 
0.263  0.013   0.063  0.035  0.072  0.782  1     0.110  0.055   -0.001 -0.021 
-0.021 -0.015    0.142  0.048  0.153  0.195  0.110  1     0.807   0.830  0.696
-0.212 -0.0001  0.112 -0.069  0.037  0.152  0.055  0.807  1     0.904  0.724
-0.086  0.164   0.227 -0.064  0.029  0.108 -0.001  0.830  0.904  1    0.765 
-0.074  0.277   0.154  0.173  0.212  0.039 -0.021  0.696  0.724  0.765  1

with the large conditionality value 122035.7, which is 
calculated as the ratio of the maximal and minimal 
eigenvalues under the assumption that they are 
nonnegative ones. 

Earlier in [7, 8], a statistically inspired 
conditionality value of 59.409 was found, which can 
be taken as a basis here, although it was found for 
another correction method. 

Replacing a negative eigenvalue with a positive 
value  0.0612 gives after normalization eigenvalues 
3.611811, 2.806524, 1.591663, 1.350369, 0.511535, 
0.408003, 0.276734, 0.162535, 0.150530, 0.069870, 
0.060426, and the corrected matrix 

1      0.550  0.569  0.150  0.343  0.253  0.259 -0.022 -0.214 -0.087 -0.070 
0.550  1      0.757  0.061  0.204  0.197  0.022 -0.011  0.005  0.166  0.260 
0.569  0.757  1      0.283  0.463  0.273  0.056  0.139  0.108  0.224  0.162 
0.150  0.061  0.283  1      0.686  0.287  0.037  0.049 -0.067 -0.063  0.169 
0.343  0.204  0.463  0.686  1      0.416  0.076  0.155  0.039  0.030  0.204 
0.253  0.197  0.273  0.287  0.416  1      0.768  0.190  0.147  0.105  0.050 
0.259  0.022  0.056  0.037  0.076  0.768  1      0.113  0.058  0.001 -0.030 
-0.022 -0.011  0.139  0.049  0.155  0.190  0.113  1      0.807  0.830  0.687
-0.214  0.005  0.108 -0.067  0.039  0.147  0.058  0.807  1      0.904  0.715
-0.087  0.166  0.224 -0.063  0.030  0.105  0.001  0.830  0.904  1      0.757
-0.070  0.260  0.162  0.169  0.204  0.050 -0.030  0.687  0.715  0.757  1

with the practically optimal conditionality 

59.77235484. 
It is easy to see, all matrices are practically the 

same. The optimality of the last correction case is 
supported by the Karhunen-Loeve expansion 
properties. 

V. CONCLUSION

In this paper, we propose a new approach to the 
metric correction of matrices of paired comparisons 

ased on the spectral decomposition of the square 
matrix of scalar products in terms of its eigenvectors. 

Optimality of the correction is supported by the 
properties of the Karhunen-Loeve expansion and the 
correct selecting of the new value of the corresponding 
eigenvalue. 

From the other side, here we face the well-known 
perturbation theory of eigenvalue problems [11, 12]. In 
the framework of this general theory, the novelty of 
our approach consists in the attempt to make a 
perturbation in eigenvalues first to recover then 
similarity matrices used in machine learning.   

In further research, all developed techniques is 
planned to implement for some actual problems, for 
example, for using different quality metrics in machine 
learning, for multimodal analysis of heterogeneous 
data in formal concept analysis [13], etc. 
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