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Abstract. The problem of drug-resistant tuberculosis, 

its diagnosis and treatment, is especially relevant today. 

Every year the causative agent of the disease becomes 

more and more resistant to existing drugs. Here we 

analyzed 1244 tuberculosis cases with available results 

of phenotypical assays for drug resistance as well as 

tuberculosis genome sequences using single-marker and 

multi-marker tests. 
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I. INTRODUCTION

The emergence of high-throughput sequencing 
methods for determining the DNA nucleotide 
sequences of living organisms has become a driving 
force for biological research. However, the genetic 
code itself does not have great practical value until the 
necessary information is extracted from it. The 
analysis of decoded genomic sequences often leads to 
large-scale problems, where the number of unknown 
parameters is measured in tens of thousands with a 
relatively small number of available observations. One 
of these tasks is the search for mutations in the 
genomes of microorganisms of bacterial nature, which 
are associated with the presence of drug resistance. 

Mathematical analysis of genome-wide data on 
Mycobacterium tuberculosis allows predicting 
resistance to first-line drugs with a high probability. At 
the same time, resistance to second-line drugs is poorly 
explained only by genomic mutations. This requires a 
deeper study of all available data. In particular, a 
comparative analysis of genomic data will provide 
relevant information with already known cases. 

II. METHODS

A. Strain collection and phylogeny

In this paper we used data collected from the Drug
Resistant Tuberculosis Project [9], https://tbportals. 
niaid.nih.gov. At the first stage, duplicates and cases 
with conflicting results for drug resistance were 
removed and 944 cases were further analyzed. We 
investigated resistance to first-line drugs: isoniazid, 
rifampicin, pyrazinamide, ethambutol and 
streptomycin, as well as second-line drugs: 
fluoroquinolones and aminoglycosides. For each drug, 
we formed the two case-control group. 

Case-control studies are sensitive to population 
separability of samples [1]. To identify population 
subgroups phylogenetic trees were constructed with 
two different methods: neighbour joining and 
maximum likelihood. As a result, initial data were 
divided into two subgroups. 

To reduce the dimension of tasks and improve 
quality we used minor allele frequency (MAF) equal to 
0.01. 

B. Single-marker tests

Single-marker tests are used to test associations
between observed drug resistance and individual 
mutations [2]. We used modifications of classical 
statistical tests as single-marker tests: Fisher's exact 
test and Cochran-Mantel-Haenszel test. Both methods 
are based on building contingency tables of the 
following form. 
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TABLE I.  CONTINGENCY TABLE CONSIDERED  
IN SINGLE-MARKER TESTS TO SEARCH FOR MUTATIONS  

ASSOCIATED WITH DRUG RESISTANCE

drug 

susceptibility 

Presence of mutation 

present absent total 

sensitive n00 n01 n0* 

resistant n10 n11 n1* 

total n*0 n*1 n** 

The Cochran-Mantel-Haenszel test, in contrast to 
the Fisher test, takes into account population 
subgroups. We need to make adjustments for the 
population subdivision because the variation in the 
frequency of occurrence of some mutations can be 
explained by their belonging to different populations 
not by drug susceptibility. To reduce the likelihood of 
errors in multiple hypothesis testing, we used the 
Bonferroni correction. 

C. Multi-marker tests

Multi-marker tests unlike single-marker consider
additive effects between mutations. In this study, we 
used an algorithm for searching for combinations of 
mutations boosting [1] and factor analysis of mixed 
data with linear mixed model.  

In addition to genomic data, we also considered 
phenotypic traits of samples. Such data include both 
categorical and continuous features. Therefore, we 
used factor analysis of mixed data (FAMD) to 
transform them into a set of uncorrelated features.  

The linear mixed model is used for regression on 
hierarchical data [4]. It considers population subgroups 
in original data. The main idea of the linear mixed 
model is that it takes into account both fixed and 
random effects. The fixed effects are the basic 
regression on the data. Each subgroup may have its 
own unique characteristics or traits, which can be 
expressed in presence of common mutations that are 
not associated with drug resistance, and vice versa, the 
peculiarities of diagnosis and treatment of tuberculosis 
and the health system itself. There may also be 
similarities in the closest subgroups. The linear mixed 
model considers such subgroup effects as random 
effects. The model can be described with the equation: 

Y = XZ 

Where Y is a phenotype vector, X – matrix with 

data,  vector of effects that determine the 

significance of a set of mutations, Z  matrix of 

random effects of subgroups,  vector of random 

effects for subgroups,  vector of residues that 
cannot be explained by the model. 

To control how well the model works we used 
cross-validation for a given number of blocks [5]. 

Another approach we used in the study is the 
search for combinations of mutations. The main 
feature of this task is that total number of considered 
mutations significantly exceeds the number of 
observations. The task of enumerating all the 
possible combinations of mutations requires large 
computational resources. To avoid this problem, one 
can switch from the task of enumerating mutations to 
the task of enumerating samples, since their number 
is much smaller. An exhaustive description of the 
algorithm is given in [1, 3]. 

III. RESULTS

First, we carried out analysis of the results of 
biological tests for drug resistance that revealed cross-
resistance between drugs. Selected correlation 
coefficients calculated from the results of biological 
tests are presented in Fig. 1. 

Fig. 1. Pairwise correlations between biological test results 

In this work, we constructed two phylogenetic trees 
for 46 genes of 944 sequences using different 
approaches: neighbour joining [6] and maximum 
likelihood [7]. Despite the difference in the lengths of 
branches and variation in the locations of the end 
nodes, identical subgroups are identified in both trees.  

We used the R software functions from the stats 
package: fisher_test for Fisher's exact test and 
mantelhaen_test for the Cochran-Mantel-Haenszel test. 
We calculated p-values for all corresponding 
mutations in the data matrix and consider only those 
with p-value greater than 5×10-8. To visualize test 
results Manhattan charts were used. The diagram 
displays a set of points, the coordinate of which on the 
abscissa is the position of the mutation, and on the 
ordinate is the negative logarithm of the p-value. Most 
of the points on the graph are close to abscissa axis. 
The higher points along the ordinate axis, the lower are 
their p-values, which mean the greater statistical 
significance. 

To validate the results obtained, we compared them 
with the drug resistance mutations published in [8]. 

Single-marker tests revealed a set of mutations 
associated with drug resistance to individual first-line 
drugs, their combinations, as well as groups of second-
line drugs. However, they were unable to identify 
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mutations associated with resistance to individual 
second-line drugs, but only their combinations. 

For factor analysis of mixed data, we used the 
prince python package, the implementation of a mixed 
linear model from the statsmodel package; cross-
validation of the generalizability of the model was 
performed using StratifiedKFold over five partitions 
from the sklearn package. To validate classification 
results we used four classical metrics in machine 
learning: precision, recall, f-score and accuracy. 

Fig. 2. Manhattan Plot of Cochran-Mantel-Haenszel test 

results (example) for first-line drugs 

For first-line drugs and their combinations, except 
ethambutol, all metrics values were greater than 0.8. 
The percentage of true positives among all positives is 
high (95% and above) for all such samples. The 
proportion of predicted drug resistance among all is 
about 80-90%. The proportion of correctly classified 
samples is slightly higher than the previous one. It is 
important that the classifier covers as many cases of 
drug resistance as possible and only few sensitive. 

For the second-line drugs, more or less good metric 
values were obtained for fluoroquinolones, including 
ofloxacin. The accuracy of the classification is about 
80%; the recall is a bit lower, about 75%. For 
aminoglycosides, the classification results are much 
worse. For capreomecin the algorithm failed to build 
the model. For amikacin, the percentage of true 
positives among all positives turned out to be below 
50%, which is equivalent to random labeling. The 
classification results are slightly better for kanamycin, 
on average, all metrics values were in the region of 
0.66 - 0.71, but these are also low estimates. Based on 
the classification results, it can be concluded that it 
was not possible to build a model for aminoglycosides 
that could predict drug resistance to these drugs with 
good probability. 

In the study, we used H37Rv NC_000962.3 
reference sequence; all mutations mentioned below 

correspond to that sequence. For all first-line drugs and 
their combinations, the mutation combination search 
algorithm found one dominant mutation, C2155175G, 
associated with isoniazid resistance. When boosting on 
these sets, the algorithm added to the dominant 
mutations new ones related to the markers of 
phylogenetic lines, while the accuracy of the classifiers 
did not increase. 

Considering all mutations occurring in one position 
as one mutation, the algorithm has identified a set of 
mutations: 7570, 7572, 7581, 7582 associated with 
resistance to fluoroquinolones (according to 
information from TBDreamDB [8]). Despite the low 
accuracy, the result for fluoroquinolones, except 
levofloxacin, is considered satisfactory.  

For aminoglycosides, with the exception of 
kanamycin, scores were rather low. Each set of 
mutations contains A1473252 associated with 
resistance to this group of drugs. This is consistent 
with the results of single-marker tests. However, this 
mutation, even when combined with others, is not 
enough to build a good classifier. For kanamycin, the 
algorithm constructed a set of mutations, which 
included the G2715356A mutation associated with 
resistance to this particular drug. 

IV. DISCUSSION

In this paper, we considered the problem of drug-
resistant tuberculosis and solutions for the comparative 
analysis of mycobacterial genomes. Using the 
phylogenetic tree, two population subgroups were 
identified in the original dataset. We found cross-
resistance between the individual drugs. 

To search for mutations associated with drug 
resistance, we used single-marker and multi-marker 
tests. To validate the test results, the TBDreamDB 
database was used, which contains already known 
mutations associated with drug resistance. Single-
marker tests revealed a set of mutations associated 
with resistance to individual first-line drugs, their 
combinations, as well as groups of second-line drugs. 
However, they were unable to identify mutations 
associated with resistance to individual second-line 
drugs. Multi-marker tests built good classifiers and 
identified combinations of mutations for individual 
first-line drugs and their groups. For second-line drugs, 
multi-marker tests have built combinations that include 
individual mutations associated with drug resistance, 
but they alone are not enough to build a good 
classifier. 
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