
Contextualizing of Architectural Security Patterns

as a Knowledge Management Challenge

Andrei Brazhuk,

Yanka Kupala State

University of Grodno

Grodno, Belarus

Evgeny Olizarovich

Yanka Kupala State

University of Grodno

Grodno, Belarus

Abstract. Security-by-design as adoption of security

solutions for a system design is in focus of this work.

This field is treated as requiring expert knowledge and

heavy for automation. A perspective way to improve

exiting security design methodologies is the use of

security patterns as a mechanism of collecting secure

design artifacts. To apply security patterns as a part of

automation of secure design, it requires well-formed

collections of security patterns and innovative method to

support the design decisions.

This work considers a contextualizing challenge as a

way to define the necessity of a security pattern in a

given case. Understanding of context includes two main

questions: "Is the security pattern suitable for a system

design?" and "Does the security pattern affect a

particular security challenge?".

We approach a direct architectural contextualizing

as a basic mechanism of automatic mapping of security

artifacts (threats, security solutions) to components of a

computer system during early design stages

(requirements, design). Also, this work describes two

use cases of the architectural contextualizing based on

an ontological cloud threat pattern catalog: the use of a

query language for finding relevant security patterns

and analysis of graphical system representations based

on an ontology driven threat modeling.

This work uses a strict ontological approach,

implemented with Web Ontology Language (OWL) and

automatic reasoning procedures.

Keywords: security pattern, ontology, contextualizing,

threat modeling, OWL

I. INTRODUCTION

Security methodologies solve various challenges of
secure development by improving security attributes of
computer systems [1]. They describe security as a set
of processes (threat modeling, risk management,
secure design, etc.) and operate different artifacts
(threats, controls, mitigations, metrics etc.) of
conceptual security models.

Security-by-design is in focus of this work, i.e.,
adoption of security solutions to a particular design.
This is commonly considered as an informal field,
required expert knowledge, and it is most challenged
from the automation point of view. They need well-

formed collections of artifacts, also methods and
algorithms to take right decisions.

Security patterns are known as a way of
representation of various security artifacts (especially
holding architectural decisions in some form) and
reusing them. They are important in improvement
efficiency of security methodologies: making the
process iterative, and integration of the threat modeling
and the secure design subprocesses. The common
approach is to use different artifacts at early lifecycle
stages: use cases and abstract security patterns at the
requirements stage, and threat taxonomy and concrete
security patterns at the design stage. Note, dealing with
threats can also be possible with a special kind of
security patterns, called threat patterns.

A security pattern is considered as a class, and
applying it to a design is called 'instantiation'. Having a
description (texts, diagrams, artifacts) of a system with
flaws and vulnerabilities, it requires to correct items of
the description from security perspective, injecting
adequate security patterns. Instantiation as a
complicated process is out of scope of this work, as
well as its possible supplementary processes like
integration and verification [2].

All the things that define the necessity of the
pattern in the design we call 'contextualizing' in this
work. Understanding of context includes two main
questions: "Is the security pattern suitable for the
system design?" and "Does the security pattern affect a
particular security challenge?".

Contextualizing can be done manually (semi-
automatically) or automatically.

Manual (semi-automatic) use case is like: an
architect works with a system architecture, depicted as
text or as a graphical notation, like UML. To help the
architect to choose a pattern (or an ordered set of
patterns) out of several hundred existing, a security
pattern catalog can be used. The catalog can contain
different labels and some sort of a query language can
be used to find relevant patterns.

Automatic use case is based on a formal scenario
that describes a computer system in general, the

101

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

scenario is used to build the system automatically by
an orchestration system software. To analyze security
aspects of such applications it could be useful apply
automation, which allows to correct the deployment
scenario by automatic implementation of a relevant
security pattern, or automatically check dependent
components for meeting of requirements of current
application's SLA. Advanced knowledge management
techniques and the Artificial Intelligence (AI)
technologies should be used to implement the
automatic use case.

This work considers essential items of
contextualizing, and contributes by a description of a
direct architectural contextualizing as a basic
mechanism of automatic mapping of security artifacts
(threats, security solutions) to components of a
computer system during early design stages. It is a
part of an ontological schema of security patterns,
based on a strict ontological approach and
implemented with Web Ontology Language (OWL)
and automatic reasoning procedures.

Also, this work describes two use cases of the
architectural contextualizing based on an ontological
cloud threat pattern catalog. The first use case shows
the usage of query language for finding relevant threat
patterns. The second one depicts the analysis of a
simple graphical system representation with data flow
diagrams (DFD) based on an ontology driven threat
modeling.

The rest of this work is structured as follows.
Section II shows related works in the threat modeling
and security pattern fields. Section III describes the
direct architectural contextualizing. Section IV
illustrates its use cases. And a summary of the results
and future research is discussed in Conclusions.

II. RELATED WORK

Traditionally, threat modeling is considered as a
semi-automatic process, happening at early stages
(requirements, design) of system lifecycle. A challenge
is to increase its automation part, because this gives
opportunities to enable automatic contextualizing.
Also, moving of threat modeling to run-time with
approaches like reflective threat modeling [3] is in
research focus now, these will require advanced
knowledge management techniques. That is another
reason for importance of the contextualizing challenge
in automatic threat modeling.

Existing efforts of the contextualizing of common
security knowledge are primary based on rule-based
languages, graphs, domain specific languages (DSL),
logics, and ontologies.

Work [4] has proposed to use a catalog of security
patterns to automatically detect vulnerabilities in a

software architecture. Their patterns have been defined
with a graph language, and context should be
determined by appropriate query rules. Several works
[5, 6] are known as a continuation of use of rule-based
languages to automate threat modeling.

Works [7, 8] have described efforts to apply a meta
language for creation of domain specific languages to
depict security challenges and its enhancement for
cyber-attack scenarios, in particular with probability
distributions. They have used attack graphs as
implementation.

Work [9] has applied a bit of logic-based approach
with Prolog based rules to define context.

Also, there are works that have described an
ontological approach of conceptual structures of
security frameworks [10, 11], in particular focused on
the threat modeling [12, 13].

From our perspective, ontologies based on strict
formalization (e.g., OWL and automatic reasoning)
most meet the automation challenges of the threat
modeling. Work [14] has described a framework of
ontology driven threat modeling that potentially
supports contextualizing based on security labels (CIA,
STRIDE) and architecture.

Despite collecting the security patterns for decade
[15, 16], several challenges of their use exist, like lack
of approaches to recognize necessity of security
patterns for a computer system design. There are
diverse researches aimed at formalizing security
patterns and creation their catalogs, and most of
patterns are represented by the UML diagrams with
text descriptions in the POSA format (at least it
requires to fill the context, problem and solution
fields). So, it can be considered two directions of
research, related to contextualizing: both
transformation of the diagrams and ordering of the
textual meta information into knowledge-like formats
(graphs, ontologies, etc.).

Work [17] has approached a security pattern
classification, based on transformation of the UML
descriptions to the Attack Deference Trees (ADT).
Work [18] has described a security pattern detection
framework in order to put them in a security pattern
graph database.

Work [19] has proposed a modeling language to
define security patterns based on metamodeling
techniques. And work [20] has described a conceptual
approach of interconnecting various pattern languages.

There are several researches, aimed to classify
metadata of security patterns [21], up to creation of
ontology-driven tools [22].

102

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

And several catalogs [23, 24] and domain specific
models [25, 26] of security patterns have been
developed.

However, it can be argued that lack of efforts exists
in order to unite the threat modeling technologies and
security pattern approach, also apply different automatic
techniques and methods into the secure development
process. And resolving of the contextualizing challenge
can be a step forward in this field.

III. DIRECT ARCHITECTURAL CONTEXTUALIZING

Direct architectural contextualizing is a part of the
ontological schema of security patterns [22]; the
schema also represents common features of patterns,
like idea, author, type, their hierarchy and relationship,
and a set of characteristics used by the scientific
community.

The ontological schema, implemented with OWL,
allows creation of well-formed catalogs of security
patterns. From architectural point of view a catalog
includes two items.

First item is a metamodel of given domain with a
hierarchy of typical components, implemented by the
class-subclass relationship (for example, our cloud
specific catalog, described below, includes
components like Cloud Infrastructure, Cloud
Application, Remote User; and Cloud Applications can
be divided to Virtual Machines, PaaS Applications,
and SaaS Applications).

Second item includes strict descriptions of security
patterns with the security and context labels.

Note, architectural context is independent from
pattern type, so it can be possible to apply the same
approach to the security patterns, misuse patterns and
threat patterns.

Fig. 1. Structure of direct architectural context

For example, it is considered interaction between
remote user and cloud application (see Fig. 2) and it
requires to put into context a security pattern that
affects some destructive activity from remote user. In
this case remote user is treated as an aggressor, and
cloud application is an affected component.
Additionally, it can be possible to apply role of the

aggressor (client) in order to keep information about
direction of the network connection.

Fig. 2. Context example

And, in addition, it can be possible to apply
security characteristics of the pattern. In general, this
includes two points of view (Fig. 1): view of a security
expert, represented by the threat concept, and view of
an architect, represented by the security concern
concept.

Depending of modeling goals different approaches
can be used to define security labels. Threat taxonomy
can be built from the CAPEC enumeration, what gives
capability to map them with the ATT&CK, CWE,
CVE enumerations [27, 28]. or use one of several
original approaches [29, 30].

Security concerns are considered as security
features that a security pattern holds in terms of
software requirements. It can be useful to consider
security control families from the NIST SP 800-53
publication as security concerns. In theory this enables
mapping of security pattern catalogs with different
security control catalogs [31, 32].

Also, the common security labels are used via the
security objectives (CIA) and STRIDE concepts
(Fig. 1).

Having a set of architectural (component,
aggressor, role) and security (concern, threat) labels, it
can be possible to make requests to a catalog in order
to find relevant patterns. Also, strict contextualizing
enables automatic procedures of comparing design
templates, created from the architectural labels, and
items of system description, made in some graphical or
text notation, in order to define applicability of a
security pattern.

IV. CLOUD COMPUTING USE CASE

Currently, creation of a security pattern catalog
includes two stages. Firstly, an ontology, based on the
schema [22], should be created to describe concepts
and instances of a specific computing environment.
Then a JSON-schema file from the ontology can be
generated by a simple tool. Secondly, pattern
descriptions can be created as JSON files with a
JSON-schema based editor. The simple tool allows
generating of an ontology of security patterns from the
pieces of JSON.

We have been developing the Academic Cloud
Computing Threat Patterns (ACCTP) catalog [33]
(https://nets4geeks.github.io/acctp/) to research

103

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

feasibility of the ontological approach of management
of security patterns. Threat pattern catalog is a kind of
security pattern catalog, intended to collect
architectural threats of a particular domain and used
for analysis of security use cases and creation of a
threat taxonomy. Our implementation of ACCTP has
also included references to the common cloud security
solutions to make it more close to the real security
challenges.

A. Finding relevant threat patterns

To illustrate this use case, we use the Protege
ontology editor and the DL query language. For
example, to show all the threats the Cloud
Application concept can be affected, you can use a
DL sentence like:

hasAffectedComponent some CloudApplication

To apply the STRIDE filter to the previous query,
you can use request (its results are shown in Fig. 3):

hasAffectedComponent some CloudApplication and
hasSTRIDE value STRIDE_Denial_of_Service

Fig. 3. Example of DL query

B. Analysis of graphical system description

Several graphical notations, like data flow diagrams
(DFD) and process flows exist that be used to apply
flow-based threat modeling.

In order to enable an ontological approach of
DFD analysis, we have converted the ACCTP
ontology to an appropriate ontological domain
specific threat model [33], we have created a console
modeling tool, and adopted third-party GUI threat
modeling tool (OWASP Threat Dragon). The
ontologies of a base threat model, the ACCTP
domain specific threat model, and semantic
interpretation of a diagram should be processed by
automatic reasoning procedures to get a list of threats
for a given system description.

Fig. 4 shows threats that touch remote cloud users,
interacting with a cloud application. Threats are taken

the catalog by the automatic reasoning procedures, and
this 'automatic' decision is based on a sort of an
ontological flow template that catches such kind of
interactions.

Fig. 4. Results of automatic threat modeling

V. CONCLUSION

This work contributes the direct architectural
contextualizing as a basic mechanism of automatic
mapping of security artifacts (threats, security
solutions) to components of a computer system during
the requirements and design stages. It can be possible
strictly define a context of a security (threat) pattern
with proposed properties. However, direct
contextualizing is a naive approach that can be used as
a proof of concept and for restricted use cases of semi-
automatic secure design. To extend it, advanced
knowledge management and decision support (AI-
like) technologies are needed. Additionally, the
challenge of automatic instantiation should be
considered because strict contextualizing depends on
such a challenge.

Also, this work describes the use cases of the
contextualizing based on an ontological cloud threat
pattern catalog (use of a query language and ontology
driven threat modeling of data flow diagrams). Note,
industry adoption of the use cases requires creation of
software tools and modules, and redesign of existing
security methodologies in order to integrate threat
modeling and design itself (DFDs are not considering
as a good design approach).

Mentioned above challenges form possible
directions of future research.

104

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

REFERENCES

[1] A.V. Uzunov, E.B. Fernandez, K. Falkner, "ASE: A
comprehensive pattern-driven security methodology for
distributed systems." Computer Standards&Interfaces 41,
2015, pp. 112-137.

[2] T. Peng, S. Wang, J. Geng, Q. Wang, "Verification of the
Instantiation and Integration of Security Patterns." Journal of
Web Engineering , 2020, pp. 521-556.

[3] D. Van Landuyt, L. Pasquale, L. Sion, "Threat models at run
time: the case for reflective and adaptive threat management
(NIER track)," SEAMS'21: Proceedings of the 16th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2021.

[4] B.J. Berger, K. Sohr, R. Koschke, "Automatically extracting
threats from extended data flow diagrams," International
Symposium on Engineering Secure Software and Systems.
Springer, Cham, 2016.

[5] S. Peldszus, "Model-driven Development of Evolving Secure
Software Systems," Software Engineering (Workshops),
2020.

[6] K. Tuma, at. al., "Automating the early detection of security
design flaws," Proceedings of the 23rd ACM/IEEE
International Conference on Model Driven Engineering
Languages and Systems, 2020, pp. 332-342.

[7] S. Katsikeas, et al., "An attack simulation language for the IT
domain," International Workshop on Graphical Models for
Security, Springer, Cham, 2020, pp. 67-86.

[8] W. Xiong, S. Hacks, R. Lagerström, "A Method for
Assigning Probability Distributions in Attack Simulation
Languages," Complex Systems Informatics and Modeling
Quarterly, 2021, vol. 26, pp. 55-77.

[9] S. Hahner, et al., "Modeling Data Flow Constraints for
Design-Time Confidentiality Analyses," 2021 IEEE 18th
International Conference on Software Architecture
Companion (ICSA-C), 2021, pp. 15-21.

[10] R.Y. Venkata, et al., "A Domain-agnostic Framework for
Secure Design and Validation of CPS Systems," International
Journal on Advances in Security, Vol. 13, Num. 3 & 4, 2020.

[11] V. Vassilev, et al., "Intelligence graphs for threat intelligence
and security policy validation of cyber systems," Proceedings
of International Conference on Artificial Intelligence and
Applications, Springer, Singapore, 2021, pp. 125-139.

[12] M. Välja, et al., "Automating threat modeling using an
ontology framework," Cybersecurity, vol. 3, no. 19, 2020.

[13] A. Shaked, Y. Reich, "Model-based Threat and Risk
Assessment for Systems Design," 7th International
Conference on Information Systems Security and Privacy
(ICISSP 2021), 2021, pp 331-338.

[14] A. Brazhuk, "Security patterns based approach to
automatically select mitigations in ontology-driven threat
modelling," Open Semantic Technologies for Intelligent
Systems (OSTIS), 2020, pp. 267-272

[15] H. Washizaki, et al., "Systematic Literature Review of
Security Pattern Research," Information, 2021, vol. 12, no. 1.

[16] A.J. Jafari, A. Rasoolzadegan, "Security patterns: A
systematic mapping study," Journal of Computer Languages,
2020, vol. 56.

[17] S. Salva, L. Regainia, "An Advanced Approach for Choosing
Security Patterns and Checking their Implementation," arXiv
preprint, arXiv:2007.03275, 2020.

[18] A.K. Alvi, M.A. Zulkernine, "A security pattern detection
framework for building more secure software," Journal of
Systems and Software, 2021, vol. 171.

[19] B. Hamid, S. Gürgens, A. Fuchs, "Security patterns modeling
and formalization for pattern-based development of secure
software systems," Innovations Syst. Softw. Eng. vol. 12,
no. 2, 2016, pp. 109–140.

[20] M. Weigold, et al., "Pattern Views: Concept and Tooling for
Interconnected Pattern Languages," Symposium and Summer
School on Service-Oriented Computing, Springer, Cham,
2020, pp. 86-103.

[21] M. VanHilst, et al., "A multi-dimensional classification for
users of security patterns,". J. Res. Pract. Inf. Technol.
vol. 41, nо. 2, 2009, pp. 87–97.

[22] A. Brazhuk, E. Olizarovich, "Format and Usage Model of
Security Patterns in Ontology-Driven Threat Modelling,"
Russian Conference on Artificial Intelligence, Springer,
Cham, 2020, pp. 382-392.

[23] N. Marko, A. Vasenev, C. Striecks, "Collecting and
Classifying Security and Privacy Design Patterns for
Connected Vehicles: SECREDAS Approach," International
Conference on Computer Safety, Reliability, and Security,
Springer, Cham, 2020. pp. 36-53.

[24] M. Papoutsakis, et al., "Towards a Collection of Security and
Privacy Patterns," Applied Sciences, 2021, vol. 11, nо. 4.

[25] R. Saemaldahr, et al., "Reference Architectures for the
IoT: A Survey," Innovative Systems for Intelligent Health
Informatics. IRICT, Lecture Notes on Data Engineering
and Communications Technologies, vol 72. Springer,
Cham, 2021.

[26] C. Silva, et al., "Contract-based design patterns: a design by
contract approach to specify security patterns," Proceedings
of the 15th International Conference on Availability,
Reliability and Security, 2020, pp. 1-9.

[27] K. Kanakogi, et al., "Tracing CAPEC Attack Patterns from
CVE Vulnerability Information using Natural Language
Processing Technique," Proceedings of the 54th Hawaii
International Conference on System Sciences, 2021.

[28] C.B. ŞAHİN, "The Role of Vulnerable Software Metrics on
Software Maintainability Prediction," Avrupa Bilim ve
Teknoloji Dergisi, 2021, nо. 23. pp. 686-696.

[29] A.V. Uzunov, E.B. Fernandez, "An extensible pattern-based
library and taxonomy of security threats for distributed
systems," Computer Standards & Interfaces, 2014, vol. 36,
nо. 4, pp. 734-747.

[30] A. Massel, D. Gaskova, "Identification of Critical Objects in
Reliance on Cyber Threats in the Energy Sector," Acta
Polytechnica Hungarica, 2020, vol. 17, nо. 8.

[31] K.P. Joshi, L. Elluri, A. Nagar, "An Integrated Knowledge
Graph to Automate Cloud Data Compliance," IEEE Access,
2020, vol. 8.

[32] V.I. Vasilyev, A.M. Vulfin, L.R. Chernyakhovskaya,
"Cybersecurity Risk Analysis of Industrial Automation
Systems on the Basis of Cognitive Modeling Technology,"
Digital Forensic Science, IntechOpen, 2019.

[33] A. Brazhuk, "Threat modeling of cloud systems with
ontological security pattern catalog," International Journal of
Open Information Technologies, vol. 9, nо. 5, 2021, pp. 36-41.

105

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

