
Correctness of Control Systems with Concurrenсy

Behavior

Liudmila Cheremisinova

United Institute of Informatics Problems

of NAS of Belarus

Minsk, Belarus

cld@newman.bas-net.by

Dmitry Cheremisinov

United Institute of Informatics Problems

of NAS of Belarus

Minsk, Belarus

cher@newman.bas-net.by

Abstract. The discussed problem is to verify whether

a reactive control system design with concurrency

behavior meets its specification. A model of the desired

behavior is in the form of parallel automaton that

describes concurrent control algorithms. It is proposed

to generate test patterns in the process of simulating the

design specification of a concurrent system, which

includes an algorithm for the behavior of not only the

system itself, but also the environment of the designed

device.

Keywords: concurrent algorithm, hardware

verification, test pattern, simulation, PRALU language

I. INTRODUCTION

The paper deals with the problem of verification of
digital systems with parallelism of behavior. In the
functional verification phase, it is established whether
the designed device implements the desired behavior,
i.e. whether it works according to the requirements set
in its specification. The interest in the problem is
motivated by the fact that with the growth of the
complexity of the designed control systems, the labor
costs for their testing also grow. The testing and
debugging phase accounts for up to 60 - 80% or more
of the total cost of developing control systems.

The most common approach to verification is
simulation testing, which requires a test system,
which is a specialized software environment that
solves three main tasks: generating a test sequence;
verifying the correct behavior of the component
under test and evaluating the completeness of testing
relative to the original specification. A test is a
sequence of sets of signal values applied to the input
of a device under test and a set of expected signal
values generated by it. The purpose of the
verification test is to identify errors as a result of
situations where the expected results do not coincide
with the results of the device under test when the
corresponding test sequence is submitted [1].

The quality of testing directly depends on the test
sequences used. The methods for constructing test
sequences traditionally used in testing practice are

based on manual, random and directed test
generation. Although such tests allow detecting a
significant number of errors in the design, they do
not give an estimate of the completeness of the
coverage of the operation area of the device under
test. In this sense, more effective is the verification
of control systems based on model checking [2, 3].
In the case, a test sequence is generated based on a
model describing the desired system behavior, which
is specified by a device design specification in a
certain language. Tests are built on the basis of the
specification of the designed system in an
algorithmic way; the responses of the device under
test are compared with the expected values derived
from the specification.

If the model is correct and the device under test
must implement the specified behavior (and only it),
then the successful passing of tests, generated
appropriately based on this model, can serve as a
sufficient guarantee of the system correct
implementation. The description of the specification
is assumed to be correct. The internal structure of an
implementation under test can be viewed as a black
box. The assessment of the completeness of testing
is determined by the degree of coverage of the
scenarios of the device operation, specified by the
specification.

The verification problem is considered for the case
of reactive systems [4]. The peculiarity of these
systems (as opposed to systems of transformational
type) lies in the continuous (and, in the general case,
infinite) exchange of signals with the external
environment to accomplish the task. The most popular
model of reactive systems is the state machine [5, 6],
which describes sequential behavior and is widely
used to describe protocols

However, there are a number of systems in which
the expressive means of finite state machines are
insufficient. The most important property of such
systems is the inherent parallelism of the processes
occurring in them. The problem of model-based

133

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

verification for devices with concurrent behavior has
not yet been sufficiently studied. One of the most
studied types of models of such devices is a system
consisting of simultaneously operating components,
which is modeled as a network of finite state machines
or labeled transition systems (LTS) [3]. Approaches to
testing labeled transition systems were proposed [7],
in which this problem was considered as checking the
system for input-output conformance - ioco relation.
The device under test meets the specification in
respect to ioco relation if, after any sequence of inputs
allowed by the specification, the observed responses
of the device under test meet the values expected in
the specification.

There are also known approaches to generating
test sequences for systems using models of "true
parallelism", where some actions are performed in
parallel and in the same component, and when it is
necessary to control the order of execution. These
approaches are based on Petri nets. Test cases for
such systems are generated on the basis of the Petri
net reachability graph [8], according to which test
cases are generated by traversing it [9–11],
similarly to how it is done for the case of finite
state machines [12]. Reachability graph-based
verification is one of the most studied approaches
to verifying systems with behavior parallelism. The
disadvantage of this approach is the exponential
growth of the size of the space of possible states of
the system and, accordingly, the size of the
reachability graph. As a result, the reachability
graph faces the problem of an explosion in the
number of states, which negatively affects the
performance of testing complex systems.

The paper considers the problem of constructing
a test system for verifying the circuit (or software)
implementation of a control device with parallelism
of behavior. As an example of such systems,
control systems in industry, where it is necessary to
take into account the parallelism present in control
objects, can be mentioned. Within the framework of
this system, the specification of the designed device
is set in the PRALU language for describing
parallel control algorithms [4]. The same language
describes the behavior of an object controlled by a
designed device. The control object is considered as
a part of the test environment. The device
implementation is viewed as a black box for which
only inputs and outputs are available. Test
sequences are formed on the basis of the described
algorithms for the behavior of the device and the
control object dynamically - in the process of
simulating the control algorithm.

II. LANGUAGE TO SET SPECIFICATIONS FOR

DESIGNING DEVICES WITH PARALLELISM OF BEHAVIOR

Concurrency in a specification arises for a variety
of reasons. For example, it can be a multi-block
system in which some actions are performed in
parallel, but in different components. And finally,
systems with "real parallelism", when some actions
are performed in parallel and in the same component,

The problem of designing control devices is one of
the most important in the automation of production
processes in various industries. When solving the
problem of implementing control devices, one has to
deal with the parallelism present in control objects.
The aim of such object control is to ensure the
interacting components to work in parallel and
asynchronously in a coordinated manner. The
parallelism present in control objects is reflected in the
functional model of digital devices that control these
objects. It is also inherent in digital devices of this
class that control actions and signals about the state of
control objects are described by Boolean variables,
and only a small percentage of all information is
numerical. At present, networks of interacting finite
state machines and languages based on Petri net are
used as the language for setting the specification for
the design of control devices.

To set the specification for the design of devices
with parallelism of behavior, it is proposed to use
parallel logic control algorithms, which are widely
used in the design and testing of digital systems. One
of such languages is the PRALU language [4] for
describing logic control algorithms. Algorithms in the
PRALU language are represented in the form of causal
dependencies between events occurring in a technical
system, the behavior of which is described in terms of
binary variables: control actions and signals about the
state of the control object are Boolean variables.

The main operations of the PRALU language
waiting are acting operations. The waiting operation
"– kin" boils down to waiting for the moment in time
when the conjunction kin takes the value 1. The acting

operation " kout" is performed by assigning the
variables that form the conjunction kout to values that
turn it into 1 In one of the interpretations of the acting
operations in the language, it is assumed that all
internal variables (if any in the description) and output
(or control) variables retain their values until any of
the acting operations changes them. The waiting and
acting operations can be interpreted as polling the
states of the sensors of the control object and issuing
commands to the executive and signal equipment.

A control algorithm on PRALU is represented by
an unordered set of sentences, each of which opens
with a label and consists of one or several equally

134

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

labeled linear chains of language operations, ending

with transition labels: "i: li  i", where li denotes
some linear algorithm consisting of language

operations; i and i are initial and final labels, which
are non-empty subsets of elements from the set M =
={1, 2,…, m}, which can be interpreted as partial
states (in the sense that they can exist simultaneously).

The order of execution of the chains in the process
of a control algorithm implementation is determined

by the start set N [4], its current values are Nt  M.
Among the algorithm proposals, one is distinguished
as the initial; its label is entered into the set N before
the implementation of the algorithm.

In the process of a control algorithm
implementation, the chains are started independently
of each other. If at some moment in time for some

chain "i: li  i" the condition i  Nt is satisfied and
the event ki

in is realized, with the expectation of which
the chain li begins, then it is started. In this case, Nt is

replaced by (Nt \ i)  i, and after the end of the

chain, the new state of Nt becomes equal to (Nt \ i) 

i. The syntactically parallel algorithm is characterized

by the presence of labels |i|  1, |i|  1. An
alternative branching is provided by the constraint

(i  j)  (i  j)(ki
in  kj

in=0).

As an example, we will give a parallel algorithm
describing the cycle of the manipulator, which consists
in moving it between the extreme positions recorded
by the sensors r and l. Movements to the left and to the
right are initiated by signals L and R, respectively. In
the initial position, the manipulator is in position r and
starts the working cycle after pressing s button. The
manipulator is controlled by the buttons of the control
panel "enable" - s and "disable" - e. These buttons can
be pressed during the working cycle in any sequence,
the manipulator reacts to them only in the position r: it
continues the working cycle if the s button was
pressed last, or stops if e.

Description of the control algorithm in the PRALU
language, defined on the sets {s, e, r, l} and {L, R} of
input (or conditional) and output (control) variables:

RUNNING_CYCLE(s, e, r, l / R, L)

1:  2.3

2: – g  L – l L  R – r R  2

3: – s  g – e g  3

The control algorithm is cyclical: once started, it
can function indefinitely. Input variables of the
algorithm are the variables s, e, r, l, these variables fix
the state of the environment. Output variables L, R
initiate movement to the left and to the right. In
addition, there is one more internal variable g,

introduced to remember the fact of pressing the s or e
button during the operating cycle of the manipulator:
g = 1, if s button was pressed last, and g = 0, if e.

III. SIMULATION OF REACTIVE SYSTEMS WITH

PARALLELISM OF BEHAVIOR

In [4], it was proposed to characterize digital
devices by the type of algorithmic description.
Devices, the model of which are classical algorithms
(scheduling algorithms), belong to the type of
transformation. Their purpose is to compute some
result from the original data through a finite sequence
of steps. Examples of such systems are processors,
programming language compilers, web servers.

The purpose of a reactive system [4] is to interact
with the environment. The behavior of a reactive
system is set by a control algorithm. The functioning
of reactive systems, ideally, never ends. It follows that
the algorithm of a reactive system is not an algorithm
in the sense of the classical theory of algorithms (there
is no sign of a finite number of steps). In current
literature, control algorithms are called
communication protocols. Nevertheless, to formalize
these algorithms, one can use the same approach as for
transformation systems - description by specifying a
formal language and an abstract computational
mechanism. Examples of such devices are controllers
of computer peripheral devices connected to a
common bus, embedded systems and equipment
control devices. Recently, the term "reactive system"
began to be used to designate software systems in
which data streams are processed asynchronously, the
volume of which is not predetermined [13].

Traditionally, a protocol has been modeled as a set
of interacting processes, where each process is
described as an extended state machine that has a
finite number of states. In modern verification
systems, the interaction of processes is represented as
communication, in which the acts of communication
are transactions through common data structures
called channels. The transaction-level model (TLM) is
a performance-enhancing tool (up to 1000 times faster
than RTL). The most popular and widely used
language for simulating TLM level is SystemC (IEEE
1666 standard), which is an extension of the C ++
language. An executable program that results from
compiling a SystemC model with any ANSI-
compliant C ++ compiler implements a simulator with
integrated simulation controls. Concurrency in
SystemC has the semantics of interleaving the
operations of sequential processes. SystemC
concurrent processes are threads that are scheduled for
sequential execution by the native scheduler SystemC
based on cooperative multitasking cooperative
multitasking.

135

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

The multithreading model has significant non-
determinism, and SystemC processes are specially
organized to eliminate this non-determinism. Atomic
operations of processes, which are transactions, are
linearizable. Linearizability is a property of a program
in which the result of any parallel execution of
operations is equivalent to some of their sequential
execution [14]. For any other thread, the execution of
the linearizable operation is instantaneous: the
operation has either not started, or it has completed.

Synchronization of TLM processes at the
transaction level is carried out by a barrier mechanism
[15]. The barrier is the points in the source code where
each process must pause and wait for all processes in
the group to reach the barrier. In the SystemC TLM
model, barrier points are set by calls to the wait (.)
function.

IV. SIMULATION OF DEESCRIPTIONS OF REACTIVE

SYSTEMS IN PRALU LANGUAGE

Algorithms in the PRALU language can be
interpreted by the TLM model; this requires a
refinement of the semantics of waiting and acting
operations. The essence of the refinement is to extend
the definition of the partial order of the implementation
of operations, given by the original parallel algorithm,
to a linear order. An interleaving parallelism model is
used, in which concurrency is understood as the ability
to order operations in an arbitrary way. Waiting and
acting operations are considered as compositions of
some elementary operations. In this interpretation,
algorithms on PRALU have the property of
linearizability, i.e. the result of parallel execution of the
algorithm is equivalent to some sequential execution of
atomic operations. Transactions in algorithms on
PRALU are represented by waiting and acting
operations that have a common variable and describe
the interaction event [16].

The data structure in the TLM model of the
PRALU algorithm is a vector of variable values, the
components of which are pairs representing the
current and planned values for each variable. Access
to the vector components of variables is carried out
through the operation of setting the planned value of
the algorithm variable and the operation of checking
the value of the conditional variable. The
implementation of a waiting operation for an
algorithm on the PRALU consists of the sequential
execution of the operations of algorithm suspending
and checking the values of the variables in the vector
of current values, the acting operation consists of
performing the operations of setting the planned
values of the variables.

When describing the scheduling procedures for
computations associated with the linear ordering of

partially ordered operations, the concept of a branch is
traditionally used as a set of sequential subprocesses
starting with a given operation. A sequential
subprocess is usually called the maximum chain of
operations of a process that are in a direct sequence. A
branch is a dynamic object generated by the operation
of its formation and destroyed by the operation of its
termination.

Synchronization of concurrent chains of the
PRALU algorithm is carried out using a barrier
mechanism. Barrier points are set by the operation to
suspend execution of branches. The data structure of
the synchronization barrier is represented in the
memory by the queue QR of branches ready for
execution and the queue QW of waiting branches. The
operation of forming a branch consists in entering its
first operation into the QR. The meaning of the branch
termination operation is clear from its name: the
branch is removed from the QR.

The fundamental point in simulating algorithms on
PRALU is the agreement on the duration of the
execution of the operations of the language; in
particular, it concerns the acting operations. This
convention significantly affects the degree of
conformity of signal changes produced by the
emulator and appearing at the outputs of the circuit
implementation. The implementation (as well as
simulation) of PRALU algorithms is performed under
some assumption about the duration of the execution
of the language operations. The most natural
assumption is that all operations (and, in particular,
acting operations) have the same duration.

One of the ways to increase the speed of
computations is to assume that operations have zero
duration. In this case, calculations of operations of one
branch are performed until their continuation requires
a change in the states of conditional variables. This
means that branches will only be suspended while
waiting operations are in progress. For a hardware
implementation, it is more natural to assume the same,
but not zero, duration of the execution of acting
operations. In this case, branch execution is suspended
after acting operations.

When simulating the control algorithm, branches
are sequentially extracted from the QR and executed
until suspended. The execution of branch G is
suspended if^

1) if its initial fragment "– kin  kout" cannot be
executed on the set of current values of algorithm
variables;

2) if its initial fragment "– kin  kout" is already
executed.

136

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

In the first case, the branch G is transferred to the
queue QW. In the second case, a new branch is
entered into the queue QW, starting with the operation
that should be executed next in the branch G. The
barrier is reached when the queue becomes empty.
When the barrier is reached, the following processes
are started:

1) transferring elements from the queue QW into
the queue QR (QW becomes empty);

2) entering the next values of variables as planned
values (if the system is not closed);

3) sending the planned variables values to the
current ones for each component of the vector of
variables. Then the first operation from the queue QR
is started.

Reaching the barrier fixes the clock cycles of the
emulator, and the changes in the values of the
variables (marked in the vector of the planned values)
correspond to the changes in the signal values at the
outputs of the circuit implementation of the control
system when the signal values corresponding to the
values in the vector of the planned values are fed to its
inputs. Thus, the verification process of a control
algorithm can be performed in two ways:

1) dynamically in the process of debugging the
control algorithm;

2) on the test sequence obtained after simulation of
the control algorithm.

The transformation of the description of the
algorithm in the PRALU language into the TLM
model is carried out by translating it into expressions
of the intermediate procedural language, which is
carried out by substitutions of compositions from
elementary operations instead of the operations of the
PRALU language [16]. In the PRALU TLM model,
there is no need to explicitly specify the barrier points
(unlike the SystemC model). The barrier is formed
automatically during the broadcast. Synchronizing
processes takes longer than computing, especially in
distributed computing. The operations of forming,
terminating and suspending branches are related to the
overhead of organizing computations.

Barrier synchronization is considered to be quite
memory and runtime expensive mechanism. However,
in the TLM model in the PRALU language, each of
the operations of the barrier mechanism can be
implemented in modern microprocessors with one
command, including the suspension, which is
analogous to the wait (.) function in SystemC. A
separate scheduler is not required.

V. METHODOLOGY OF CONSTRUCTING A TEST

SYSTEM BASED ON THE PRALU LANGUAGE

Let us demonstrate the process of constructing a
test sequence in the process of simulation and
debugging the specification for the design of a
control device given in PRALU language. As an
example, consider the above algorithm
RUNNING_CYCLE(s, e, r, l / R, L) of manipulator
operation.

In the PRALU language, one can describe the
functioning of the system as a whole, including not
only setting the control algorithm, but also describing
the behavior of its environment (as an object of
control). This makes it possible to simplify the
simulation of the control algorithm, since in this case
it is sufficient to change the values of only those
variables, the change in the values of which is not
fixed in these two algorithms (they are external
variables for the system). In our case these are the
variables s and e. The description of the behavior of
the environment is as follows:

ОС (R, L / r, l/)

1: – L r  l – R l  r 1

The above algorithms on PRALU describe the
functioning of the manipulator system as a whole;
changes are recorded not only in the internal
variable g, but also in the values of other variables,
except for the variables s and e. Before starting the
manipulator, the variables have the following
values: s = e = 0, r = 1, l = g = R = L =0, r = 1, set
by the vector 0010000.

Let us demonstrate the process of simulation of the
described manipulator functioning for the case of a
synchronous implementation of the control algorithm.
For this case, 10 branches are allocated in the
algorithms:

1: – L r |4  l |5 – R l |6  r 1

2: – g  L |7 – l L |8  R |9 – r R  2

3: – s  g |10 – e g  3

Table I shows the cycles of simulation of the
PRALU manipulator algorithms. Each of the subtables
corresponds to one simulation cycle spawned by the
reached barrier Bi. The columns of each of the
subtables specify the numbers of the branches Gj,
selected from the queue QR at each cycle; the
numbers of the branches in the queues QR and QW;
the vector of current values of the algorithm variables
at the corresponding step Сi, and vectors Pi of the
planned values of variables after considering the
branches.

137

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

The first row of the subtable shows the states of
QR, QW, Сi and Pi at the beginning of the
corresponding cycle. When passing from the i-th cycle
to the (i+1)-th we set the values to be: QRi+1 = QWi,
Сi+1 = Сi+1 = Pi. The vector Ti generates with its
components corresponding to the conditional and
internal variables the test action, and the vector Сi
obtained after the execution of the cycle generates a
reference response to this action, set by the
components corresponding to the control variables.

TABLE I SIMULATION STEPS

Simulation

steps

Branches

Gj

Queues Variable values

QRi QWi Ti Pi

B1 1,2,3  10 100 00 00 100 00

1 2,3 1 00 100 00

2 3 1,2 00 100 00

3  1,2,10 00 101 00

B2 1,2,10  00 101 00 00 101 00

1 2,10 1 00 101 00

2 10 1,7 00 101 01

10  1,7,10 00 101 01

B3 1,7,10 00 101 01 00 101 01

1 7, 4 00 001 01

7 10 4,7 00 001 01

10  4,7,10 00 001 01

B4 4,7,10  00 001 01 00 001 01

4 7,10 5 00 011 01

7 10 5,7 00 011 01

10  5,7,10 00 011 01

B5 5,7,10  00 011 01 00 011 01

5 7,10 5 00 011 01

7 10 5,8 00 011 00

10  5,8,10 00 011 00

B6 5,8,10  00 011 00 00 011 00

5 8,10 5 00 011 00

8 10 5,9 00 011 10

10  5,9,10 00 011 10

B7 5,9,10  10 011 10 00 011 10

5 9,10 6 00 001 10

9 10 6,9 00 001 10

10  6,9,3 00 000 10

B8 6,9,3  01 001 10 00 001 10

6 9,10 1 00 101 10

9 10 1,9 00 101 10

3  1,9,3 00 100 10

B9 1,9,3  00 100 10 00 100 10

1 9,3 1 00 100 10

9 3 1,2 00 100 00

3 1,2,3 00 100 00

B10 1,2,3  00 100 00 00 100 00

The required tests are represented by pairs of
vectors: a five-component vector of the test pattern,
the components of which correspond to the values of
the variables s, e, r, l, g, and a three-component vector
of reactions, the components of which correspond to
the values of the variables g, R, L.

For the simulation fragment, shown in Table 1, the
following test sequence is obtained for verifying the
control device from the initial state:

10100 / 100; 00101 / 101; 00001 / 101; 00011 / 100;

00011 / 110; 10011 / 010; 01001 / 010; 00100 / 000.

Here the first part of each test sets a test pattern and
the second part shows the expected responses of the
device under test after feeding it by the test pattern.

VI. CONCLUSION

The behavior of an embedded control device is
highly dependent on the object it controls and the
environment in which it operates. Simulation of the
control device for verification purposes should be
carried out in the area of its planned operation. Using
the PRALU language to describe control algorithms
makes it possible to specify the behavior of the control
system as a whole. Currently, there is software support
for design automation and debugging of control
systems based on PRALU, which includes simulation
tools and synthesizers of the PRALU language in the
hardware model in the Verilog and C languages [16].

REFERENCES

[1] A. Kamkin, M. Chupilko, “Obzor sovremennykh
tekhnologiy imitatsionnoy verifikatsii apparatury” (Overview
of modern technologies for simulation verification of
equipment), Programmirovaniye, 2011, № 3, pp. 42–49.

[2] L. Hoffman, “Talking Model-Checking Technology”,
Communications of the ACM, vol. 51, 2008, № 07/08,
pp. 110–112.

[3] Tretmans J. Model based testing with labelled transition
systems. Formal Methods and Testing: Lecture Notes in
Computer Science (Springer), vol. 4949, 2008, pp. 1–38.

[4] A. D. Zakrevskij, “Parallel'nye algoritmy logicheskogo
upravlenija” (Parallel Logic Control Algorithms), Minsk:
Institut tehnicheskoj kibernetiki Nacional'noj akademii nauk
Belarusi, 1999, 202 p. (in Russian).

[5] D. Lee, M. Yannakakis, “Principles and methods of testing
finite state machine – a survey”, Proceedings of the IEEE,
vol. 84, 1996, № 8, pp. 1090–1123.

[6] B. Kanso, O. Chebaro, “Compositional testing for FSM-
based models”, International Journal of Software
Engineering & Applications (IJSEA), vol. 5, 2014, № 3,
pp. 9–23.

[7] H. Ponce de Leon, S.H. Delphine Longuet, “Model-based
Testing for Concurrent Systems with Labeled Event
Structures”, Software Testing, Verification & Reliability,
vol. 24, 2014, № 7, pp. 558–590.

[8] H. Watanabe, T. Kudoh, “Test Suite Generation Methods for
Concurrent Systems based on Coloured Petri Nets”,
Proceedings of the 2nd Asia-Pacific Software Engineering
Conference, 1995, pp. 242–251.

[9] U. Farooq, C. P. Lam, H. Li, “Towards Automated Test
Sequence Generation”, Proceedings of the 19th Australian
Conference on Software Engineering, 2008, pp. 441–450.

[10] H. Zhu, X. D. He, “A Methodology of Testing High-level
Petri Nets”, Information and Software Technology, vol. 44,
2002, pp. 473–489.

[11] J. Liu, X. Ye1, J. Zhou, X. Song, “I/O Conformance Test
Generation with Colored Petri Nets”, Applied Mathematics
and Information Sciences, vol. 6, 2014, № 6, pp. 2695–2704.

138

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

[12] I. B. Burdonov, A. S. Kosachev, V. V. Kuljamin,
“Neizbytochnye algoritmy obhoda orientirovannyh grafov.
Determinirovannyj sluchaj” (Irredandant algorithms for
traversal of directed graphs, The determinate case),
Programmirovanie, 2003, № 5, pp. 11–30 (in Russian).

[13] N. Halbwachs, “Synchronous Programming of Reactive
Systems”, Springer-Verlag, 2010, 192 p.

[14] M. P. Herlihy, J. M. Wing, “Linearizability: A Correctness
Condition for Concurrent Objects”, ACM Trans. Program.
Language Systems, 1990, pp. 463–492.

[15] Y. Solihin, “Fundamentals of Parallel Multicore
Architecture”, CRC Press, 2015, 494 p.

[16] D. I. Cheremisinov, “Proektirovanie i analiz parallelizma v
processah i programmah” (Design and the Analysis of
Parallelism in Processes and Programs), Minsk: Belaruskaja
navuka Publ, 2011, 300 p. (in Russian).

139

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

