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Abstract. The discussed problem is to verify whether 

a reactive control system design with concurrency 

behavior meets its specification. A model of the desired 

behavior is in the form of parallel automaton that 

describes concurrent control algorithms. It is proposed 

to generate test patterns in the process of simulating the 

design specification of a concurrent system, which 

includes an algorithm for the behavior of not only the 

system itself, but also the environment of the designed 

device. 
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I. INTRODUCTION

The paper deals with the problem of verification of 
digital systems with parallelism of behavior. In the 
functional verification phase, it is established whether 
the designed device implements the desired behavior, 
i.e. whether it works according to the requirements set 
in its specification. The interest in the problem is 
motivated by the fact that with the growth of the 
complexity of the designed control systems, the labor 
costs for their testing also grow. The testing and 
debugging phase accounts for up to 60 - 80% or more 
of the total cost of developing control systems. 

The most common approach to verification is 
simulation testing, which requires a test system, 
which is a specialized software environment that 
solves three main tasks: generating a test sequence; 
verifying the correct behavior of the component 
under test and evaluating the completeness of testing 
relative to the original specification. A test is a 
sequence of sets of signal values applied to the input 
of a device under test and a set of expected signal 
values generated by it. The purpose of the 
verification test is to identify errors as a result of 
situations where the expected results do not coincide 
with the results of the device under test when the 
corresponding test sequence is submitted [1]. 

The quality of testing directly depends on the test 
sequences used. The methods for constructing test 
sequences traditionally used in testing practice are 

based on manual, random and directed test 
generation. Although such tests allow detecting a 
significant number of errors in the design, they do 
not give an estimate of the completeness of the 
coverage of the operation area of the device under 
test. In this sense, more effective is the verification 
of control systems based on model checking [2, 3]. 
In the case, a test sequence is generated based on a 
model describing the desired system behavior, which 
is specified by a device design specification in a 
certain language. Tests are built on the basis of the 
specification of the designed system in an 
algorithmic way; the responses of the device under 
test are compared with the expected values derived 
from the specification. 

If the model is correct and the device under test 
must implement the specified behavior (and only it), 
then the successful passing of tests, generated 
appropriately based on this model, can serve as a 
sufficient guarantee of the system correct 
implementation. The description of the specification 
is assumed to be correct. The internal structure of an 
implementation under test can be viewed as a black 
box. The assessment of the completeness of testing 
is determined by the degree of coverage of the 
scenarios of the device operation, specified by the 
specification. 

The verification problem is considered for the case 
of reactive systems [4]. The peculiarity of these 
systems (as opposed to systems of transformational 
type) lies in the continuous (and, in the general case, 
infinite) exchange of signals with the external 
environment to accomplish the task. The most popular 
model of reactive systems is the state machine [5, 6], 
which describes sequential behavior and is widely 
used to describe protocols 

However, there are a number of systems in which 
the expressive means of finite state machines are 
insufficient. The most important property of such 
systems is the inherent parallelism of the processes 
occurring in them. The problem of model-based 
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verification for devices with concurrent behavior has 
not yet been sufficiently studied. One of the most 
studied types of models of such devices is a system 
consisting of simultaneously operating components, 
which is modeled as a network of finite state machines 
or labeled transition systems (LTS) [3]. Approaches to 
testing labeled transition systems were proposed [7], 
in which this problem was considered as checking the 
system for input-output conformance - ioco relation. 
The device under test meets the specification in 
respect to ioco relation if, after any sequence of inputs 
allowed by the specification, the observed responses 
of the device under test meet the values expected in 
the specification. 

There are also known approaches to generating 
test sequences for systems using models of "true 
parallelism", where some actions are performed in 
parallel and in the same component, and when it is 
necessary to control the order of execution. These 
approaches are based on Petri nets. Test cases for 
such systems are generated on the basis of the Petri 
net reachability graph [8], according to which test 
cases are generated by traversing it [9–11], 
similarly to how it is done for the case of finite 
state machines [12]. Reachability graph-based 
verification is one of the most studied approaches 
to verifying systems with behavior parallelism. The 
disadvantage of this approach is the exponential 
growth of the size of the space of possible states of 
the system and, accordingly, the size of the 
reachability graph. As a result, the reachability 
graph faces the problem of an explosion in the 
number of states, which negatively affects the 
performance of testing complex systems. 

The paper considers the problem of constructing 
a test system for verifying the circuit (or software) 
implementation of a control device with parallelism 
of behavior. As an example of such systems, 
control systems in industry, where it is necessary to 
take into account the parallelism present in control 
objects, can be mentioned. Within the framework of 
this system, the specification of the designed device 
is set in the PRALU language for describing 
parallel control algorithms [4]. The same language 
describes the behavior of an object controlled by a 
designed device. The control object is considered as 
a part of the test environment. The device 
implementation is viewed as a black box for which 
only inputs and outputs are available. Test 
sequences are formed on the basis of the described 
algorithms for the behavior of the device and the 
control object dynamically - in the process of 
simulating the control algorithm. 

II. LANGUAGE TO SET SPECIFICATIONS FOR 

DESIGNING DEVICES WITH PARALLELISM OF BEHAVIOR 

Concurrency in a specification arises for a variety 
of reasons. For example, it can be a multi-block 
system in which some actions are performed in 
parallel, but in different components. And finally, 
systems with "real parallelism", when some actions 
are performed in parallel and in the same component, 

The problem of designing control devices is one of 
the most important in the automation of production 
processes in various industries. When solving the 
problem of implementing control devices, one has to 
deal with the parallelism present in control objects. 
The aim of such object control is to ensure the 
interacting components to work in parallel and 
asynchronously in a coordinated manner. The 
parallelism present in control objects is reflected in the 
functional model of digital devices that control these 
objects. It is also inherent in digital devices of this 
class that control actions and signals about the state of 
control objects are described by Boolean variables, 
and only a small percentage of all information is 
numerical. At present, networks of interacting finite 
state machines and languages based on Petri net are 
used as the language for setting the specification for 
the design of control devices. 

To set the specification for the design of devices 
with parallelism of behavior, it is proposed to use 
parallel logic control algorithms, which are widely 
used in the design and testing of digital systems. One 
of such languages is the PRALU language [4] for 
describing logic control algorithms. Algorithms in the 
PRALU language are represented in the form of causal 
dependencies between events occurring in a technical 
system, the behavior of which is described in terms of 
binary variables: control actions and signals about the 
state of the control object are Boolean variables. 

The main operations of the PRALU language 
waiting are acting operations. The waiting operation 
"– kin" boils down to waiting for the moment in time 
when the conjunction kin takes the value 1. The acting 

operation " kout" is performed by assigning the 
variables that form the conjunction kout to values that 
turn it into 1 In one of the interpretations of the acting 
operations in the language, it is assumed that all 
internal variables (if any in the description) and output 
(or control) variables retain their values until any of 
the acting operations changes them. The waiting and 
acting operations can be interpreted as polling the 
states of the sensors of the control object and issuing 
commands to the executive and signal equipment. 

A control algorithm on PRALU is represented by 
an unordered set of sentences, each of which opens 
with a label and consists of one or several equally 
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labeled linear chains of language operations, ending 

with transition labels: "i: li  i", where li denotes 
some linear algorithm consisting of language 

operations; i and i are initial and final labels, which 
are non-empty subsets of elements from the set M = 
={1, 2,…, m}, which can be interpreted as partial 
states (in the sense that they can exist simultaneously). 

The order of execution of the chains in the process 
of a control algorithm implementation is determined 

by the start set N [4], its current values are Nt  M. 
Among the algorithm proposals, one is distinguished 
as the initial; its label is entered into the set N before 
the implementation of the algorithm. 

In the process of a control algorithm 
implementation, the chains are started independently 
of each other. If at some moment in time for some 

chain "i: li  i" the condition i  Nt is satisfied and 
the event ki

in is realized, with the expectation of which 
the chain li begins, then it is started. In this case, Nt is 

replaced by (Nt \ i)  i, and after the end of the 

chain, the new state of Nt becomes equal to (Nt \ i)  

i. The syntactically parallel algorithm is characterized 

by the presence of labels |i|  1, |i|  1. An 
alternative branching is provided by the constraint 

(i  j)  (i  j)(ki
in  kj

in=0). 

As an example, we will give a parallel algorithm 
describing the cycle of the manipulator, which consists 
in moving it between the extreme positions recorded 
by the sensors r and l. Movements to the left and to the 
right are initiated by signals L and R, respectively. In 
the initial position, the manipulator is in position r and 
starts the working cycle after pressing s button. The 
manipulator is controlled by the buttons of the control 
panel "enable" - s and "disable" - e. These buttons can 
be pressed during the working cycle in any sequence, 
the manipulator reacts to them only in the position r: it 
continues the working cycle if the s button was 
pressed last, or stops if e. 

Description of the control algorithm in the PRALU 
language, defined on the sets {s, e, r, l} and {L, R} of 
input (or conditional) and output (control) variables: 

RUNNING_CYCLE(s, e, r, l / R, L) 

1:  2.3 

2: – g  L – l L  R – r R  2 

3: – s  g – e g  3 

The control algorithm is cyclical: once started, it 
can function indefinitely. Input variables of the 
algorithm are the variables s, e, r, l, these variables fix 
the state of the environment. Output variables L, R 
initiate movement to the left and to the right. In 
addition, there is one more internal variable g, 

introduced to remember the fact of pressing the s or e 
button during the operating cycle of the manipulator: 
g = 1, if s button was pressed last, and g = 0, if e. 

III. SIMULATION OF REACTIVE SYSTEMS WITH 

PARALLELISM OF BEHAVIOR 

In [4], it was proposed to characterize digital 
devices by the type of algorithmic description. 
Devices, the model of which are classical algorithms 
(scheduling algorithms), belong to the type of 
transformation. Their purpose is to compute some 
result from the original data through a finite sequence 
of steps. Examples of such systems are processors, 
programming language compilers, web servers. 

The purpose of a reactive system [4] is to interact 
with the environment. The behavior of a reactive 
system is set by a control algorithm. The functioning 
of reactive systems, ideally, never ends. It follows that 
the algorithm of a reactive system is not an algorithm 
in the sense of the classical theory of algorithms (there 
is no sign of a finite number of steps). In current 
literature, control algorithms are called 
communication protocols. Nevertheless, to formalize 
these algorithms, one can use the same approach as for 
transformation systems - description by specifying a 
formal language and an abstract computational 
mechanism. Examples of such devices are controllers 
of computer peripheral devices connected to a 
common bus, embedded systems and equipment 
control devices. Recently, the term "reactive system" 
began to be used to designate software systems in 
which data streams are processed asynchronously, the 
volume of which is not predetermined [13]. 

Traditionally, a protocol has been modeled as a set 
of interacting processes, where each process is 
described as an extended state machine that has a 
finite number of states. In modern verification 
systems, the interaction of processes is represented as 
communication, in which the acts of communication 
are transactions through common data structures 
called channels. The transaction-level model (TLM) is 
a performance-enhancing tool (up to 1000 times faster 
than RTL). The most popular and widely used 
language for simulating TLM level is SystemC (IEEE 
1666 standard), which is an extension of the C ++ 
language. An executable program that results from 
compiling a SystemC model with any ANSI-
compliant C ++ compiler implements a simulator with 
integrated simulation controls. Concurrency in 
SystemC has the semantics of interleaving the 
operations of sequential processes. SystemC 
concurrent processes are threads that are scheduled for 
sequential execution by the native scheduler SystemC 
based on cooperative multitasking cooperative 
multitasking. 
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The multithreading model has significant non-
determinism, and SystemC processes are specially 
organized to eliminate this non-determinism. Atomic 
operations of processes, which are transactions, are 
linearizable. Linearizability is a property of a program 
in which the result of any parallel execution of 
operations is equivalent to some of their sequential 
execution [14]. For any other thread, the execution of 
the linearizable operation is instantaneous: the 
operation has either not started, or it has completed. 

Synchronization of TLM processes at the 
transaction level is carried out by a barrier mechanism 
[15]. The barrier is the points in the source code where 
each process must pause and wait for all processes in 
the group to reach the barrier. In the SystemC TLM 
model, barrier points are set by calls to the wait (.) 
function. 

IV. SIMULATION OF DEESCRIPTIONS OF REACTIVE

SYSTEMS IN PRALU LANGUAGE  

Algorithms in the PRALU language can be 
interpreted by the TLM model; this requires a 
refinement of the semantics of waiting and acting 
operations. The essence of the refinement is to extend 
the definition of the partial order of the implementation 
of operations, given by the original parallel algorithm, 
to a linear order. An interleaving parallelism model is 
used, in which concurrency is understood as the ability 
to order operations in an arbitrary way. Waiting and 
acting operations are considered as compositions of 
some elementary operations. In this interpretation, 
algorithms on PRALU have the property of 
linearizability, i.e. the result of parallel execution of the 
algorithm is equivalent to some sequential execution of 
atomic operations. Transactions in algorithms on 
PRALU are represented by waiting and acting 
operations that have a common variable and describe 
the interaction event [16]. 

The data structure in the TLM model of the 
PRALU algorithm is a vector of variable values, the 
components of which are pairs representing the 
current and planned values for each variable. Access 
to the vector components of variables is carried out 
through the operation of setting the planned value of 
the algorithm variable and the operation of checking 
the value of the conditional variable. The 
implementation of a waiting operation for an 
algorithm on the PRALU consists of the sequential 
execution of the operations of algorithm suspending 
and checking the values of the variables in the vector 
of current values, the acting operation consists of 
performing the operations of setting the planned 
values of the variables. 

When describing the scheduling procedures for 
computations associated with the linear ordering of 

partially ordered operations, the concept of a branch is 
traditionally used as a set of sequential subprocesses 
starting with a given operation. A sequential 
subprocess is usually called the maximum chain of 
operations of a process that are in a direct sequence. A 
branch is a dynamic object generated by the operation 
of its formation and destroyed by the operation of its 
termination. 

Synchronization of concurrent chains of the 
PRALU algorithm is carried out using a barrier 
mechanism. Barrier points are set by the operation to 
suspend execution of branches. The data structure of 
the synchronization barrier is represented in the 
memory by the queue QR of branches ready for 
execution and the queue QW of waiting branches. The 
operation of forming a branch consists in entering its 
first operation into the QR. The meaning of the branch 
termination operation is clear from its name: the 
branch is removed from the QR. 

The fundamental point in simulating algorithms on 
PRALU is the agreement on the duration of the 
execution of the operations of the language; in 
particular, it concerns the acting operations. This 
convention significantly affects the degree of 
conformity of signal changes produced by the 
emulator and appearing at the outputs of the circuit 
implementation. The implementation (as well as 
simulation) of PRALU algorithms is performed under 
some assumption about the duration of the execution 
of the language operations. The most natural 
assumption is that all operations (and, in particular, 
acting operations) have the same duration. 

One of the ways to increase the speed of 
computations is to assume that operations have zero 
duration. In this case, calculations of operations of one 
branch are performed until their continuation requires 
a change in the states of conditional variables. This 
means that branches will only be suspended while 
waiting operations are in progress. For a hardware 
implementation, it is more natural to assume the same, 
but not zero, duration of the execution of acting 
operations. In this case, branch execution is suspended 
after acting operations. 

When simulating the control algorithm, branches 
are sequentially extracted from the QR and executed 
until suspended. The execution of branch G is 
suspended if^ 

1) if its initial fragment "– kin  kout" cannot be
executed on the set of current values of algorithm 
variables; 

2) if its initial fragment "– kin  kout" is already
executed. 
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In the first case, the branch G is transferred to the 
queue QW. In the second case, a new branch is 
entered into the queue QW, starting with the operation 
that should be executed next in the branch G. The 
barrier is reached when the queue becomes empty. 
When the barrier is reached, the following processes 
are started: 

1) transferring elements from the queue QW into
the queue QR (QW becomes empty); 

2) entering the next values of variables as planned
values (if the system is not closed); 

3) sending the planned variables values to the
current ones for each component of the vector of 
variables. Then the first operation from the queue QR 
is started. 

Reaching the barrier fixes the clock cycles of the 
emulator, and the changes in the values of the 
variables (marked in the vector of the planned values) 
correspond to the changes in the signal values at the 
outputs of the circuit implementation of the control 
system when the signal values corresponding to the 
values in the vector of the planned values are fed to its 
inputs. Thus, the verification process of a control 
algorithm can be performed in two ways: 

1) dynamically in the process of debugging the
control algorithm; 

2) on the test sequence obtained after simulation of
the control algorithm. 

The transformation of the description of the 
algorithm in the PRALU language into the TLM 
model is carried out by translating it into expressions 
of the intermediate procedural language, which is 
carried out by substitutions of compositions from 
elementary operations instead of the operations of the 
PRALU language [16]. In the PRALU TLM model, 
there is no need to explicitly specify the barrier points 
(unlike the SystemC model). The barrier is formed 
automatically during the broadcast. Synchronizing 
processes takes longer than computing, especially in 
distributed computing. The operations of forming, 
terminating and suspending branches are related to the 
overhead of organizing computations. 

Barrier synchronization is considered to be quite 
memory and runtime expensive mechanism. However, 
in the TLM model in the PRALU language, each of 
the operations of the barrier mechanism can be 
implemented in modern microprocessors with one 
command, including the suspension, which is 
analogous to the wait (.) function in SystemC. A 
separate scheduler is not required. 

V. METHODOLOGY OF CONSTRUCTING A TEST 

SYSTEM BASED ON THE PRALU LANGUAGE

Let us demonstrate the process of constructing a 
test sequence in the process of simulation and 
debugging the specification for the design of a 
control device given in PRALU language. As an 
example, consider the above algorithm 
RUNNING_CYCLE(s, e, r, l / R, L) of manipulator 
operation. 

In the PRALU language, one can describe the 
functioning of the system as a whole, including not 
only setting the control algorithm, but also describing 
the behavior of its environment (as an object of 
control). This makes it possible to simplify the 
simulation of the control algorithm, since in this case 
it is sufficient to change the values of only those 
variables, the change in the values of which is not 
fixed in these two algorithms (they are external 
variables for the system). In our case these are the 
variables s and e. The description of the behavior of 
the environment is as follows: 

ОС (R, L / r, l/) 

1: – L r  l – R l  r 1 

The above algorithms on PRALU describe the 
functioning of the manipulator system as a whole; 
changes are recorded not only in the internal 
variable g, but also in the values of other variables, 
except for the variables s and e. Before starting the 
manipulator, the variables have the following 
values: s = e = 0, r = 1, l = g = R = L =0, r = 1, set 
by the vector 0010000. 

Let us demonstrate the process of simulation of the 
described manipulator functioning for the case of a 
synchronous implementation of the control algorithm. 
For this case, 10 branches are allocated in the 
algorithms: 

1: – L r |4  l |5 – R l |6  r 1 

2: – g  L |7 – l L |8  R |9 – r R  2 

3: – s  g |10 – e g  3 

Table I shows the cycles of simulation of the 
PRALU manipulator algorithms. Each of the subtables 
corresponds to one simulation cycle spawned by the 
reached barrier Bi. The columns of each of the 
subtables specify the numbers of the branches Gj, 
selected from the queue QR at each cycle; the 
numbers of the branches in the queues QR and QW; 
the vector of current values of the algorithm variables 
at the corresponding step Сi, and vectors Pi of the 
planned values of variables after considering the 
branches. 

137

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :   
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.  
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021  
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



The first row of the subtable shows the states of 
QR, QW, Сi and Pi at the beginning of the 
corresponding cycle. When passing from the i-th cycle 
to the (i+1)-th we set the values to be: QRi+1 = QWi, 
Сi+1 = Сi+1 = Pi. The vector Ti generates with its 
components corresponding to the conditional and 
internal variables the test action, and the vector Сi 
obtained after the execution of the cycle generates a 
reference response to this action, set by the 
components corresponding to the control variables. 

TABLE I SIMULATION STEPS 

Simulation 

steps 

Branches 

Gj 

Queues Variable values 

QRi QWi Ti Pi 

B1 1,2,3  10 100 00 00 100 00 

1 2,3 1 00 100 00 

2 3 1,2 00 100 00 

3  1,2,10 00 101 00 

B2 1,2,10   00 101 00 00 101 00 

1 2,10 1 00 101 00 

2 10 1,7 00 101 01 

10  1,7,10 00 101 01 

B3 1,7,10 00 101 01 00 101 01 

1 7, 4 00 001 01 

7 10 4,7 00 001 01 

10  4,7,10 00 001 01 

B4 4,7,10  00 001 01 00 001 01 

4 7,10 5 00 011 01 

7 10 5,7 00 011 01 

10  5,7,10 00 011 01 

B5 5,7,10  00 011 01 00 011 01 

5 7,10 5 00 011 01 

7 10 5,8 00 011 00 

10  5,8,10 00 011 00 

B6 5,8,10  00 011 00 00 011 00 

5 8,10 5 00 011 00 

8 10 5,9 00 011 10 

10  5,9,10 00 011 10 

B7 5,9,10  10 011 10 00 011 10 

5 9,10 6 00 001 10 

9 10 6,9 00 001 10 

10  6,9,3 00 000 10 

B8 6,9,3  01 001 10 00 001 10 

6 9,10 1 00 101 10 

9 10 1,9 00 101 10 

3  1,9,3 00 100 10 

B9 1,9,3  00 100 10 00 100 10 

1 9,3 1 00 100 10 

9 3 1,2 00 100 00 

3 1,2,3 00 100 00 

B10 1,2,3  00 100 00 00 100 00 

The required tests are represented by pairs of 
vectors: a five-component vector of the test pattern, 
the components of which correspond to the values of 
the variables s, e, r, l, g, and a three-component vector 
of reactions, the components of which correspond to 
the values of the variables g, R, L. 

For the simulation fragment, shown in Table 1, the 
following test sequence is obtained for verifying the 
control device from the initial state: 

10100 / 100;  00101 / 101;  00001 / 101;  00011 / 100; 

00011 / 110;  10011 / 010;  01001 / 010;  00100 / 000. 

Here the first part of each test sets a test pattern and 
the second part shows the expected responses of the 
device under test after feeding it by the test pattern.  

VI. CONCLUSION

The behavior of an embedded control device is 
highly dependent on the object it controls and the 
environment in which it operates. Simulation of the 
control device for verification purposes should be 
carried out in the area of its planned operation. Using 
the PRALU language to describe control algorithms 
makes it possible to specify the behavior of the control 
system as a whole. Currently, there is software support 
for design automation and debugging of control 
systems based on PRALU, which includes simulation 
tools and synthesizers of the PRALU language in the 
hardware model in the Verilog and C languages [16]. 
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