
Semantic Logging of Repeating Events in a Forward

Branching Time Model

Valerian Ivashenko

Intellectual Information

Technologies Department

Belarusian State University of

Informatics and Radioelectronics

Minsk, Belarus

ivashenko@bsuir.by

Nikita Zotov

Intellectual Information

Technologies Department

Belarusian State University of

Informatics and Radioelectronics

Minsk, Belarus

nikita.zotov.belarus@gmail.com

Maksim Orlov

Intellectual Information

Technologies Department

Belarusian State University of

Informatics and Radioelectronics

Minsk, Belarus

orlovmassimo@gmail.com

Abstract. The tasks of knowledge logging in the form

of semantic networks of the model of the unified
semantic knowledge representation are considered. The
formal model of a semantic log of repeating events in
knowledge processing and algorithms for adding and
retrieving logged events from the log are presented.
The spatial-time structure of logged processes should
satisfy a forward branching time model.

Keywords: semantic logging, repeated events,
semantic networks, branching time, full persistence,
unified semantic knowledge representation model,
multi-agent system, cognitive architecture

I. INTRODUCTION

Semantic logging (SL) is a mechanism designed to
provide the intellectual system with introspective
capabilities in order to endow it with the qualities of
an artificial consciousness, including the ability to
explain one’s own work and its results [1]. It should
take into account the non-factors of knowledge [3]
including its incompleteness, uncertainty,
hypotheticality as well as requirements for working in
real time [10]. SL consists in recording in the
knowledge representation language, for example, in the
form of a semantic network, a knowledge about an
order (system) of actions and events (phenomena)
occurred in processes of knowledge processing.

II. OVERVIEW

SL can be considered as one of the approaches to
a process introspection [6]. SL approach was
descrbied in several previous works [4, 5, 9–11, 16].
From the point of view of the becoming structure
or structure of time, there are several types of
process time models: linear time, tree or branching
time, directed acyclic time structure, arbitrary time
structure [2, 9–11, 13]. From the point of view of the
data structure processing there are also several types of
persistent data structures (DS): partially persistent DS,
fully persistent DS, confluently persistent DS [7, 9].
One of the approaches to achieve DSs persistence

(structures when some changes are made to them
retain all their previous states and access to those
states) is using CoW data structures [8].

There are also several points of view for
knowledge processing (KP) in multi-agent an AI
systems: concurrent and distributed KP [6] without a
certain global state or common knowledge base such
as in actor model; coordinated and partially
synchronized KP via such means as blackboard
systems [15], fully synchronized KP using global
states as in state space search models and algorithms
(using various logics) [2].

Some algorithms and models have been proposed
for acyclic process structures [9–11]. All considered
models do not take events repetitions into account.

Their basic algorithms solve mostly SL generation
and information retrieving tasks.

A. Basic procedures

1) Generation: The following log (pre-existing
and possibly empty) generation algorithm (Fig. 1)
pushes pre-created event identifiers with links
providing full persistence of the structure of the
semantic log as a set of its integrated versions.

LE, log, e, n ←
if (undefined (log))

log, g ← createLeaf Link (LE, log, e, n, 2)
else

l ← getFirstLink (log)
c ← getCoefficient (log, l)
log, g ← createLeaf Link (LE, log, e, n, 2/c)
 while (hasNextLink (log, l) ∧ (c = 1))
f, p, c ← l, getN extLink (log, l) , 1
l ← p
if (hasNextLink (log, l))

l ← getNextLink (log, l)
c ← getCoefficient (log, l)

g ← createPair (log, f, p, 2/c, g)
g ← appendLink (log, l, g)

← log

Fig. 1. Log link generation algorithm

149

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:ivashenko@bsuir.by
mailto:nikita.zotov.belarus@gmail.com
mailto:nikita.zotov.belarus@gmail.com
mailto:orlovmassimo@gmail.com
mailto:orlovmassimo@gmail.com

2) Retrieving information: There are two basic

search algorithms in such SL structures (Fig. 2, 3).

log, i ←
l, c, s ← getFirstLink (log) , 1, 1
j ← getIdentifier (log, l)
while (hasNextLink (log, l) ∧ less (i, j))

n ← getNextLink (log, l)
d, k ← n, 1
while (k < c) k, d ← k + k, getDownLink (log, d)
j ← getIdentifier (log, d)
if (¬less (j, i))

s ← s + c

c ← c ∗ getCoefficient (log, l)
l ← n

while (1 < c)

l ← getDownLink (log, l)

d ← l
if (hasNextLink (log, l))

n ← getNextLink (log, l)

d ← n
c, k ← c/2, 1

while (k < c) k, d ← k + k, getDownLink (log, d)

j ← getIdentifier (log, d)
if (¬less (j, i)) s, l ← s + c, n

if (less (j, i) ∨ less (i, j)) ← s
← s, l

Fig. 2. Get event by identifier algorithm

log, n ←
l, c, s ← getFirstLink (log) , getCoefficient (log, l) , 1
while (hasNextLink (log, l) ∧ ¬ (n < s + c))

s, l ← s + c, getNextLink (log, l)

c ← c ∗ getCoefficient (log, l)
c ← c/getCoefficient (log, l)
while (1 < c)
l, c ← getDownLink (log, l) , c/2
if (hasNextLink (log, l) ∧ ¬ (n < s + c))
| s, l ← s + c, getNextLink (log, l)

if (s = n) ← getEvent (l)
← nothing

Fig. 3. Get event by index algorithm

B. Applied tasks and questions

These algorithms are the platform to solve more
complicated problems and applied tasks. There are
several levels of such tasks and problems: level of
relations between events and their repetitions [9]; level
of spatial-time relations between phenomenons [13];
level of applied tasks of analysis and synthesis of
external and internal phenomenons. The problems of
the first level include problems of determining: event
anteriority, primary event (Fig. 4) and last common
event (LCE). For mentioned models, there are four
cases of anterioity of two events: event coincidence,
event alternativeness (synchronicity), the first event
antecedence, the second event antecedence [2]. Tasks
of the third level are the memorizing and supervising
of internal and external processes, process mining [6]

including history analysis and navigation, process
reproduction (inductive programming). These tasks
can arise in such areas as education, software
development and interaction within control version
systems, (digital) music composition and others [4, 6,
12, 15]. As for history navigation as a general applied
tasks, let’s consider the following approach. Let’s
consider an agent named “locator”. This agent has
five properties: two initial events (or its repetitions) –
minor and major, two margin events (or event
repetitions) – minor and major, chosen event (event
repetition). Also this agent has behavior
implemented by several procedures: initializing
initial, margin and chosen events; transferring a
chosen event to a user (another agent); updating
minor or major margin event by the chosen event and
choosing new event; updating minor margin event
either by the major margin event or by the minor
initial event and choosing new event; updating major
margin event either by the minor margin event or by
the major initial event and choosing new event.

log ←
l, c, s ← getFirstLink (log) , 1, 1
while (hasNextLink (log, l))
c ← c ∗ getCoefficient (log, l)
s, l ← s + c, getNextLink (log, l)

while (1 < c)
l, c ← getDownLink (log, l) , c/2
if (hasNextLink (log, l))
s, l ← s + c, getNextLink (log, l)

← s
Fig. 4. Primary event log index determining algorithm

III. PROPOSITION

A. Repetition logging

Previous models did not take into account the
repetitions of events. Event (periodic) repetitions can
be interpreted as event occurrences in (locally) cyclic
spatial-temporal model. It is important to admit that all
further events under consideration will have no more
than one immediate predecessor. In the case of
repeating events, the previous models are
inappropriate. Thus, we need to identify event
repetitions but not events. Therefore, we have many
repetition identifiers for one event. ll of them should
be enumerated and distinguished by an event
repetition number. Another problem is that we might
want to know, ”Is there any event occurrence in the
log or not?” without any interest in a particular event
repetition. To solve the last problem (occurrence
problem), global (event) occurrence identifiers (GOI)
can be used. For an event, its first event repetition
identifier may be used as a GOI. Thus, a global
occurrence number is an event repetition number
which equals 1 for each event. If we have a log

150

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

structure with partial persistence only then these are
all essential differences.

The Fig. 5, 6 show the basic algorithms for KP
under a log structure where event repetitions are taken
into account. Algorithm for getting a last event
repetition number can be obtained replacing
getCoefficient(log, l) calls at Fig. 4 by 2.

log, r ←
l, c, s ← getFirstLink (log) , 1, 1
while (hasNextLink (log, l))

c ← c + c
s, l ← s + c, getNextLink (log, l)
t, k ← l, c

while (1 < c)
l, c ← getDownLink (log, l) , c/2
if (hasNextLink (log, l))
| s, l ← s + c, getNextLink (log, l)

else t, k ← l, c

l ← newNextLink (log, t)
while (1 < k) k, l ← k/2, newDownLink (log, l)
← appendRepetitionLog (log, l, r)

Fig. 5. Algorithm of the queuing of an event repetition

log, n ←
l, c, s ← getFirstLink (log) , 1, 1
while (hasNextLink (log, l) ∧ ¬ (n < s + c + c))

c ← c + c
s, l ← s + c, getNextLink (log, l)

while (1 < c)
l, c ← getDownLink (log, l), c/2
if (hasNextLink (log, l))
| s, l ← s + c, getNextLink (log, l)

if (s = n) ← getOccurenceStructure (l)
← nothing

Fig. 6. Algorithm of the getting of occurrence structures by

number of an event repetition (getOccurrences)

B. Full persistence problems

However, if we work with full persistence SL
structures then there will be a set of other problems.
There will be: enumerating all repetitions of a certain
event in the log (for partial persistence it can be
efficiently solved with log-specific event repetition
identifiers and additionally segregated enumeration
queues), an occurrence problem that requires more
complex solution than for a partial persistence SL
structure.

С. Model

SL model of repeating events having no more than
one immediate predecessor is defined by (1) and
satisfies (2).

e, d, l, i, g, o, r, h, n, p, P, R ∈ E+I × S+E×N ×

×LS × IS× PE × {⊥, ⊤}S×P
× R+

S×P × (1)
×I+

L×N × N+
L×N × N+

L×I × 2I
 ×2

L

where E – events, I – identifiers, S – descriptors
structures with occurrence log sets (implemented as
CoW critbit trees), L – logs, P – primary
(occurrence) identifiers, R – repetition sublogs, h –
event identifier by index mapping, n – repetition
number by index mapping, p – index by identifier
mapping.

g = (d ∩ ((E × {1}) × S)) ◦ i. (2)

IV. COMPUTATION COMPLEXITY ANALYSIS

It can be shown also by experimental
confirmations that generation algorithms have

O (log (n) f (n)) time complexity. Whereas time

complexities of basic search algorithms do not

exceed O (log2 (n) ∗ f (n)), where f (n) – time of

the access to an element of logs.

V. EFFICIENT SOLVABLE PROBLEMS

AND APPLICATION

Anteriority and LCE problems for repeating events

that satisfy given restrictions can be efficiently

solved with following algorithms (Fig. 7, 8 and 9).

e, n ←
log ← getRepeatedEventLog (e, n)
if (defined (log))
← getIdentifier (getFirstLink (log))

← emptyIdentifier

Fig. 7. Algorithm for getting an event repetition identifier
(getRepeatedEventIdentifier)

e, n, a, m ←

l ← getRepeatedEventLog (e, n)

g ← getRepeatedEventLog (a, m)
i ← getRepeatedEventIdentifier (e, n)
j ← getRepeatedEventIdentifier (a, m)
if (coincide (e, a))
|← coincidence
if (interdependent (e, a))
|← interdependence
if (less (i, j))

if (retrieveREByIdentifier (g, i))
|← antecedenceFirst
else

if (less (j, i))
if (retrieveREByIdentifier (l, j))
|← antecedenceSecond

else

|← coincidence
← potentialAlternativeness

Fig. 8. Anteriority determining algorithm

These algorithms are primarily oriented to

navigation task applications. Anteriority problem

151

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

seems to be more complicated for cyclic process

structures. That is particularly why, there are five

cases of anterioity of two events: event coincidence,

event alternativeness (synchronicity), the first event

antecedence, the second event antecedence,

interdependency (antecedence for both of events)

(Fig. 8) [9–11, 13]. To solve anteriority problem for

the last case, authors suggest to combine an

incremental structures for merge-find set approach

[14] and the proposed SL models.

e, n, a, m ←

x ← getPrimaryRepeatedEventIndex (e, n)

y ← getPrimaryRepeatedEventIndex (a, m)

l ← getRepeatedEventLog (e, n)
i ← retrieveREByIndex (l, x)
i ← getRepeatedEventIdentifier (i)

g ← getRepeatedEventLog (a, m)

 j ← retrieveREByIndex (g, x)
j ← getRepeatedEventIdentifier (j)

k ← getRepeatedEventIdentifier (a, m)

 h ← getRepeatedEventIdentifier (e, n)
if (less (i, j) ∨ less (j, i) ∨ less (k, i) ∨ less (h, j))
|← nothing
if (less (x, y)) c, d, p ← e, n , a, m, x

else c, d, p, l ← a, m , e, n , y, g

|q, r ← 1, 1
while (r < p)

k ← retrieveREByIndex (l, r)

if (anteriority (d, k) = antecedentFirst) p ← r
else

|q ← r
r ← (p+q)/2

← retrieveREByIndex (l, r)

Fig. 9. Last common event repetition determining algorithm

VI. CONCLUSION

The proposed model and algorithms are able to
provide prompt response to the main issues related to
the study of the order of logged events and their
repetitions. Basic algorithms were implemented using
an integration platform which is the implementation
platform for the reference-testing system [15]. The use
of implemented algorithms is focused on supporting
the automation of interaction with the knowledge base
with reference materials and analyzing the history of
responses by the user to test questions.

REFERENCES

[1] D. McDermott et al. Mind and Mechanism. Cambridge
(Mass), MIT Press. (xv +), 2001, pp. 262.

[2] J. F. Allen, Time and time again: the many ways to represent
time, Intern. J. of Intelligent Systems, 6, 1991, pp. 341–
355.

[3] A. S. Narinyani, Non-factors: inaccuracy and
underdetermination – difference and interrelation. Izv.
RAN (RAS). Ser. Teoriya i sistemy upravleniya, 5, 2000,
pp. 44–56 (in Russian).

[4] Sorin Ilie, Mihnea Scafes, Costin Badica, Thomas
Neidhart, Rani Pinchuk. Semantic logging in a distributed
multi-agent system. 2010.

[5] G. Pavlin, M. Kamermans, and M. Scafes. Dynamic
process integration framework: Toward efficient
information processing in complex distributed systems. In
Proceedings of 3rd International Symposium on Intelligent
Distributed Computing – IDC’2009, vol. 237 of Studies in
Computational Intelligence, Springer, 2009, pp. 161–174.

[6] W. Gaaloul, K. Gaaloul, S. Bhiri, A. Haller, M. Hauswirth.
Log-based transactional workflow mining. Distributed and
Parallel Databases 25, 2009.

[7] J. R. Driscoll, D. D. Sleator, R. E. Tarjan, Fully Persistent
Lists with Catenation. J. ACM 41(5), 1994, pp. 943–959.

[8] O. Rodeh. B-Trees, Shadowing, and Clones. ACM
Transactions on Storage 3 (4), 2008, 1.

[9] V. P. Ivashenko, Semantic logging of knowledge
processing. Proceedings of the workshop “Information
Technologies and Systems 2017 (ITS 2017)”, Minsk,
Belarus, 25 October 2017, pp. 110–111 (in Russian).

[10] V. P. Ivashenko. Algorithms for semantic logging of
knowledge processing, BIG DATA & Advanced
Analytics, Minsk, Belarus, 3-4 May 2018, pp. 267-273.
(in Russian).

[11] V. P. Ivashenko, Semantic logging of knowledge
processing based on binary generated. PRIP, 2019,
pp. 172–177.

[12] D. A. Pospelov, Situational management: theory and
practice, Nauka, Moskva, 1986, p. 288. (in Russian).

[13] V. P. Ivashenko. Ontological model of space-time
relations for events and phenomena in the processing of
knowledge. Vestnik BrGTU 5 (107), 2017, pp. 13-17. (in
Russian).

[14] Z. Galil, G. Italiano. Data structures and algorithms for
disjoint set union problems. ACM Computing Surveys 23
(3), (1991), pp. 319—344.

[15] V. P. Ivashenko, Reference and testing system based on
the unified semantic representation of knowledge, ITS
2020, 2020, pp. 80–81. (in Russian).

[16] C. Ringelstein, S. Staab. Logging in distributed
workflows. Proceedings of the ISWC’07 Workshop on
Privacy Enforcement and Accountability and Semantics
(PEAS 2007), 320, 2008, pp. 19–30, 2007.

152

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

