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Abstract. A digital computational platform is 

proposed for processing fluorescence spectroscopy data, 

which implements complex analysis of experimental 

information based on the simulation modelling and 

machine learning algorithms. Data analysis includes 

partitioning biophysical data into clusters according to 

the degree of likeness in some measure of similarity, 

finding the median cluster members (medoids), applying 

the data reduction method and visualizing the 

experimental data in a two-dimensional space. Analysis 

of the medoids is carried out by the analytical or 

simulation models of optical processes occurring in 

molecular systems. The visualization of data clusters in 

the original and transformed feature spaces is done with 

the aim of user interaction. As a demonstrative example, 

the platform FluorSimStudio is implemented for 

processing time-resolved fluorescence measurements 

(https://dsa-cm.shinyapps.io/FluorSimStudio). The 

digital platform is an open system and allows addition of 

complex analysis models, taking into account the 

development of new modelling and analysis algorithms. 
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modelling, machine learning, digital platform  

I. INTRODUCTION

Experimental fluorescence spectroscopy methods 
are applied to study the optical properties of molecular 
compounds and are commonly used in the studies of 
artificial photonic materials, protein complexes, 
biopolymers, DNA sequencing, biological membranes, 
cell and tissues, medical diagnostics [1]. The 
considerable development of methods is driven due to 
the improvements of effective molecular fluorophores, 
including genetically expressed proteins (for example, 
GFP), semiconductor nanoparticles and quantum dots, 
optical systems for laser excitation and registration of 
radiation, allowing high-precision measurements, 
computer technologies for data storage and processing 
[2]. Novel experimental high-throughput techniques, 
integrating pulsed, phase and modulation methods for 
recording fluorescence decay times, form the basis of 

modern fluorescence microscopy and allow obtaining 
big data, characterized by high spectral, time and spatial 
resolution [3]. The main fluorescence spectroscopy and 
microscopy techniques for studying complex molecular 
systems in "cuvettes" and living cells are fluorescence-
lifetime imaging microscopy (FLIM), fluorescence 
recovery after photobleaching (FRAP) and its 
derivatives – fluorescence loss in photobleaching 
(FLIP) and fluorescence localization after 
photobleaching (FLAP), fluorescence fluctuation 
spectroscopy (FFS, combining fluorescence correlation 
spectroscopy (FCS), fluorescence cross-correlation 
spectroscopy (FCCS), photon counting histogram 
(PCH) and fluorescence intensity distribution analysis 
(FIDA)), fluorescence sensing (FS) [4]. 

The existing data analysis approaches to processing 
fluorescence spectroscopy data can be divided into 
classical and modern, based on machine learning, 
algorithms. Classical methods consider separate or joint 
analysis of datasets using deconvolution, least squares, 
maximum likelihood, Bayesian, target and global 
analysis to estimate the parameters of mathematical 
models of optical processes and systems [5]. New 
approaches are based on: i) projection transformations 
and following parameter estimation (for example – 
transformation of fluorescence intensities into the 
phasor space (phasor analysis), ii) using machine 
learning techniques, mainly artificial neural networks 
and ensemble algorithms, to estimate the model 
parameters, iii) segmentation of cell or tissue images 
and subsequent classification by a machine learning 
algorithm [5, 6]. The main disadvantages of existing 
data processing methods are limited or poor efficiency, 
that is due to the use of nonphysical analytical models 
(multi-exponential or polynomial decompositions), 
poor accuracy in parameter estimating when analyzing 
noisy data (phasor analysis, neural networks), slow 
computations (global and Bayesian analysis), the need 
for the large training datasets (neural networks), special 
requirements for computing resources (the usage of 
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video cards or multiprocessor nodes to accelerate neural 
network computing), and finally the lack of specialized 
software for automated data processing. Therefore, the 
primary task is to develop an integrated data analysis 
approach and computational platform that eliminates 
the main drawbacks of existing methods, which would 
include physical models of the processes and systems 
under study, effective methods and software for 
processing a series of fluorescence spectroscopy data.  

A computational approach for processing large sets 
of time-resolved fluorescence data using simulation 
modelling and data mining algorithms was developed 
[7, 8]. By this methodology it is possible to increase the 
accuracy of the estimated parameters of biophysical and 
optical processes occurring in the studied molecular 
systems. Specialized and general-purpose software 
tools and products, both commercial and freely 
available, have been developed for statistical 
processing, analysis and simulation of fluorescence 
spectroscopy data. However, there are no unified 
integrated software tools for processing large datasets 
using simulation modelling and machine learning 
methods. The development of a digital software 
platform for simulation and machine learning analysis 
of fluorescence data in various biophysical systems 
under experimental studies is an critically important and 
urgent task. 

In this paper, we propose the conception of a digital 
software platform for the simulation modelling and 
machine learning analysis of optical processes in 
molecular systems studied by the fluorescence 
spectroscopy methods. As a demonstrative example, 
developed integrated methodology is implemented into 
the computational platform FluorSimStudio for 
processing fluorescence kinetic curves obtained through 
FLIM experiments.  

II. METHODOLOGY

A. Review of the Computational Tools for a Digital

Platform.

A digital computational platform in this case is an
intellectual software resource or a programming 
environment designed to model and analyze large 
experimental fluorescence spectroscopy data studied in 
biophysical research. The platform includes a 
programming environment, integrated coding 
languages, software tools for automation, code 
debugging and creating an application interface, models 
of research objects, methods for analyzing and 
visualizing data, assessing the quality of analysis and 
the reliability of models. The choice of the optimal 
software platform primarily implies the choice of a 
programming environment and interface development 
tools for interacting with the user.  

Various computing platforms and programming 
technologies are used to implement the software. In 
most publications on benchmarking open access 
packages, there is no clear leader in machine learning 
and data mining. Currently, a large number of software 
tools are actively used, including WEKA, Tanagra, 
Rapid Miner, KNIME, Orange, Java, Python and R 
projects, as well as platforms implemented using high-
performance programming languages C++ and Scala. 
The advantages of these software resource are 
computational performance, a wide range of libraries 
for statistical analysis, cross-platform integrity, the 
ability to develop user interfaces, parallel computing, 
work directly with existing databases and data 
warehouses. The main disadvantages include the lack of 
versatility, significant requirements for computing 
resources, and the limitation of the integration of the 
above fascinating properties in a single format. The 
most promising projects for organizing the digital 
environment are Scala-, Python- and R-platforms. A 
platform based on the Scala language (for example, 
Apache Hadoop) is designed to analyze big data in 
production projects and is used to solve industrial 
programming problems. Python applications are aimed 
at solving general engineering and data analysis 
problems with an emphasis on neural network 
approaches and programming. R-projects are developed 
primarily with the aim of optimizing and validating 
applied statistical analysis, which includes approaches 
using classical and data mining methods. Let take a 
closer look at the R environment.  

The main advantages of the statistical programming 
environment R are the presence of optimized structures 
for representing data objects, which greatly simplifies 
data processing, optimization of programming tools and 
implementation of computation algorithms (in the sense 
of minimizing the introduction of errors into the 
program code), the ability to use a huge set of 
processing algorithms, statistical and data mining, 
various computing resources of the scientific 
community [9]. The main drawback is the low 
computational performance in the basic version of the 
environment layout, which is especially critical when 
working with large datasets and developing simulation 
models. This limitation can be partially or completely 
eliminated by connecting program codes of high-
performance programming languages Scala, Java, C++ 
(packages rscala, rjava, Rcpp, inline), parallel 
computing procedures (managed by packages parallel, 
Rmpi, snow, snowfall), additional packages for efficient 
processing big data (readr, LaF, data.table, ff, 
bigmemory) and the use of third-party software 
resources (Microsoft R Open and Intel Math Kernel 
Library libraries, H2O big data analysis platforms, 
Apache Hadoop and Spark systems, with using h20, 
Rhadoop and SparkR packages).  
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An important issue is the development of the 
interface of a software application. The most popular R-
code integrating user interface development packages 
are gWidgets, rpanel, svDialogs, RGtk2, qtbase, tcltk. A 
new direction in the development of R-applications for 
the analysis of biophysical systems [10] is associated 
with the creation of "reactive" web interfaces using the 
Shiny package and the subsequent placement of the 
software implementation on the shinyapps.io resource 
provided by the open source software developers 
RStudio. The advantage of this approach is the ability 
to remotely work with a web application for a wide 
scientific audience of users online via the global 
Internet. To implement the software application, the R 
computing environment and the Shiny package were 
chosen to create a web interface for the developed 
application. 

The computing platform is organized according to the 
example of open projects of network resources CRAN 
(https://cran.r-project.org), R-Forge (https://r-forge.r-
project.org), Bioconductor (https://www.bioconductor. 
org), Github (https://github.com). It is a programming 
and simulation environment that contains updated and 
supplemented libraries of analytical and simulation 
models of optical processes in molecular systems, built-
in tools for machine learning methods and assessment 
of the quality of analysis and modelling, provides the 
scientific community with opportunities to develop new 
algorithms and simulation models. 

B. Conception of the Digital Platform.

The digital platform can integrate the research
scheme for a certain biophysical process or molecular 
compound using a complex approach based on 
simulation modelling and machine learning methods 
[7]. A schematic diagram of the methodology for 
spectral or/and time-resolved fluorescence spectroscopy 
data analysis of the platform is shown in Fig. 1. 
Consider the main stages of data analysis. 

Fig. 1. Main stages of the fluorescence data analysis of a digital 

platform using simulation modelling and machine learning 

The platform is designed to analyze experimental or 
simulated data. Data loading and graphical presentation 
is carried out in block 1. Visual assessment of two-
dimensional and three-dimensional fluorescence 
datasets allows predetermining the choice of a 
mathematical model for describing the physical 
processes, making a supposition regarding the number 
of data clusters, and limiting the choice of measures for 
calculating the similarity of samples based on the noise 
level of the data.   

Modelling and visualization of fluorescence data are 
carried out in block 2. Integrated models of optical 
processes are considered. Simulation modelling is 
carried out using Monte Carlo algorithms [11]. The 
input characteristics of the simulation are the type and 
parameters of the model, the number of samples and the 
number of simulations. 2D or 3D visualization are 
intended for expert analysis of modeled data, study of 
the behavior of models when changing their parameters, 
manual selection of the most optimal modelling 
parameters, such as the number of simulations and data 
points, as well as initial approximations of parameters 
for subsequent precise determination during fitting 
using mathematical models. New and improved models 
of optical-physical processes in molecular systems can 
be developed and integrated into the software 
environment. 

In block 3, cluster analysis of fluorescence data is 
performed in the space of experimentally detected 
features. Clusters of data are identified according to 
some degree of similarity (Euclidean, Minkowski, 
Manhattan, maximum  or Canberra distance). The 
number of clusters is determined intuitively, 
automatically from the hierarchy dendrogram of data 
constructed on the basis of the cluster binding measure 
(Ward, nearest neighbor, far neighbor, or middle bond), 
or on the basis of a statistical criterion [12, 13]. The 
median representatives of the clusters are calculated – 
medoids, samples or data objects having the smallest 
average distances to the rest of the objects of the 
corresponding clusters.  

A data reduction is carried out in block 4. The 
consideration of a large group of uninformative 
experimentally detected features leads to difficulties 
in data analysis, namely, to their noise, an increase in 
the amount of data, and distortion of reliable 
information about clusters of similar samples. To 
improve the quality of data analysis, in particular, the 
visual assessment of data partitioning into clusters, it 
is expedient to carry out the stage of data analysis, 
which includes the transition to a low-dimensional 
space of new informative features, in which the 
fluorescence data form clusters. To perform this 
transformation, it is required to use data 
dimensionality reduction algorithms, among which 
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the method of principal component analysis is the 
most widely known [14]. Conversion of fluorescence 
data using principal component analysis is performed. 
The proportion of relative variation attributed to 
principal components is set, limiting the number of 
components. Principal components are selected that 
correspond to a given variation in the data (for 
example, 0.95 out of 1). A diagram of the proportions 
of variation of the first ten principal components is 
constructed, according to which the contribution to 
the total variance in the data is estimated. Clusters and 
their medoids are displayed in the scatter diagram of 
the first two principal components. Medoids are 
calculated in the space of initial features or in the 
space of the main components that explain a given 
value of variability. For example, if the data clusters 
are not separated, then it can be assumed that there is 
only one kind of fluorescent compounds. Otherwise, 
the presence of several forms of compounds 
(fluorophores) is allowed. For the convenience of 
visual control of cluster separability, histograms of 
frequencies are plotted on the axis of the first three 
principal components. Good separability of clusters is 
characterized by the presence of a multimodal form of 
histogram distributions.  

In block 5, cluster medoids are analyzed to 
accurately determine the parameters of fluorescent 
compounds using an optimization algorithm and 
mathematical models. To approximate the fluorescence 
data, represented by the found medoids, analytical and 
simulation models for describing photophysical 
processes are used. Optimization methods are applied 
for the optimal selection of the parameters of 
mathematical models during the approximation of 
experimental data. In this work, the Nelder–Mead 
method [15] is chosen, which does not take into account 
the derivative of the objective function, which greatly 
simplifies the use of simulation models in the parameter 
estimation procedure. The best approximation is chosen 
according to a criterion (or a set of criteria) that 
determines the degree of deviation of the theoretical 
model from the experimental data. As a rule, such a 
criterion is presented analytically in the form of a 
function of experimental and theoretical data, the form 
of which is determined by the field of application, the 
direct modelling method and the conditions of the 
experiment. In our experiments, we consider the 
normalized chi-square criterion, diagrams of weighted 
residuals and their autocorrelation function [12].  

The visualization of the results and the analysis of 
graphical images of the estimated data clusters are 
carried out with the aim of interpreting, explaining, 
improving the understanding of the research object and 
its behavior (block 6). Reduced data are plotted in the 
three principal component space, the original feature 

space, and the principal component coordinates that 
explain the given fraction of the variation in the data. 
The presentation of a diagram of three main 
components, interactive for user interaction, allows to 
visually assess the proximity of the found clusters and 
their shapes, the location of individual data points, the 
influence of experimental effects. Diagrams of a set of 
informative components enable to determine data 
clusters for a possible assessment of the parameters of 
models in the space of the main components. The latter 
helps to improve the accuracy of parameter estimation 
by reducing noise in the data due to the elimination of 
uninformative components describing the experimental 
noise. The procedure for estimating the parameters of 
models in the space of principal components can be 
additionally implemented in the platform. An 
interactive domain data cluster diagram let to 
qualitatively explore groups of processed data. 

III. RESULTS

For the practical implementation of the digital 
platform conception, integrating simulation modelling 
and machine learning algorithms, the computational 
platform FluorSimStudio is developed for processing 
fluorescence kinetic curves at FLIM experiments. It is 
launched on an R server hosted on a network resource, 
such as shinyapps.io. To implement simulation models, 
it is proposed to use the C++ programming language. 
The choice and development of algorithms for data 
analysis is carried out by direct programming or by 
connecting ready-made machine learning packages 
provided by the scientific community of developers 
through open projects CRAN, Bioconductor, Github. 
The user's work is carried out through a web 
application. In the structure of the computational 
approach, the platform integrates the implementation of 
simulation models, analysis algorithms, provides 
computational tools for applying the developed 
simulation models and methods to the analysis of 
datasets, instruments for assessing its quality, 
visualizing and interpreting data.  

The programming implementation of the platform 
FluorSimStudio is organized using the Shiny R package 
and contains a set of functions that integrate the 
methodology for an integrated approach to data 
analysis. The web application is hosted at https://dsa-
cm.shinyapps.io/FluorSimStudio. An example of the 
interface window is shown in Fig. 2. The main interface 
window consists of nine panels corresponding to six 
stages of analysis: loading, modelling and clustering 
data, reducing data dimensionality by the principal 
component analysis (PCA), fitting medoids (data 
analysis), visualizing and interpreting the results, 
information about the authors of the development, and 
instructions for using the computational resource.  
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The performance of the computational platform 
FluorSimStudio was tested by examples of the analysis 
of datasets representing systems of free fluorophores 
and in the presence of the Förster electronic excitation 
energy transfer process [1]. The obtained results are in 
good agreement with those previously published for 
analytical models of single- and stretch-exponential 
fluorescence decay laws [7]. Comprehensive analysis 
using simulation models and machine learning lets 
successfully to restore the parameters of optical 
processes from the experimental data.  

IV. CONCLUSIONS

The conception of a digital platform for processing 
fluorescence spectroscopy data is developed, which is 
an implementation of an integrated approach for the 
complex machine learning analysis and modelling of 
optical processes in biophysical systems. Integrated 
data analysis pipeline comprises partitioning data into 
clusters, finding the cluster medoids, applying the data 
reduction method and visualizing the experimental data 
in a two-dimensional space, analyzing the medoids with 
analytical or simulation models. By this data analysis 
approach, it is possible to enhance the efficiency of the 
biophysical research. The digital platform is a 
programming environment designed to model and 
analyze large experimental fluorescence spectroscopy 
data. It includes a development framework, coding 
languages, tools for automation, code debugging and 
creating an application interface, models and methods 
for processing and visualizing data, assessing the 
quality of analysis. The R computing environment and 
the Shiny package are selected to create a web interface 
and online version for the developed software 
application. The C++ programming language is used for 
accelerating simulation modelling algorithms. The 

proposed methodology of the digital platform is realized 
in the computational platform FluorSimStudio, 
intended for processing fluorescence decay curves in 
molecular systems. FluorSimStudio provides high 
productivity of processing large fluorescence datasets, 
is hosted on the server and can be used in the 
educational process and for the study of experimental 
systems. Computational efficiency of the digital 
platform can be increased by connecting software tools 
for high performance big data computing (for example, 
H2O, Apache Hadoop, Spark resources).  
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Fig. 2. FluorSimStudio web application interface window. 

Example of clustering fluorescence decay curves 
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