
Developmental Milestones of Graphics Technologies

Dzmitry Mazouka

Department of Information Management Systems

Belarusian State University

Minsk, Belarus

mazovka@bk.ru

Viktor Krasnoproshin

Department of Information Management Systems

Belarusian State University

Minsk, Belarus

krasnoproshin@bsu.by

Abstract. The complexity of modern graphics

hardware and software has a long history. In this paper

we review the historical milestones of computer graphics

development. This analysis will help us to understand the

common problems and trace a direction for the future

improvements.

Keywords: computer graphics, graphics pipeline,

directx

I. INTRODUCTION

Computer graphics is a very distinct field in
computer science. Unlike other areas, the primary
concern of computer graphics lies in the presentation of
information, rather than pure computation. This makes
computer graphics universally applicable in a vast
number of human activities, including science,
engineering, manufacturing and entertainment. In a
peculiar turn of events, computer graphics development
and evolution has been primarily driven by the
entertainment industry. Started late 20th century, video
games have been at the forefront of computer graphics
progress, which was later picked up and expanded by the
movie industry. These days it is hard to find an artifact
of the popular culture that was not produced using
computers in one way or another.

Computer graphics technologies pursue two
fundamental goals: photorealism and real-time imagery
generation. Despite tremendous progress in the past
decades, we are still far from being able to render 3D
scenes of arbitrary complexity with perfect picture
quality. Perhaps it is not an achievable goal after all, but
the development will always be concerned with image
quality and the speed of generation.

From general perspective, the technological stack of
computer graphics consists of the following layers:
graphics hardware, graphics Application Programming
Interface (API), visualization system, and application.

Application layer defines a particular visualisation
problem that needs to be solved with visualisation tools.
It can be a video game, a visual effect in a movie, or a
piece of engineering software. The requirements for
application layer are defined externally and they often
drastically differ from one problem, or product, to

another. This is where the need for quality and speed
arises, to propagate, eventually, to the lower layers. Due
to the nature of application problems, little can be done
for formalisation of this layer.

Visualisation system layer can be optional, however
complex applications almost never get built from
scratch. Many years of experience in various fields of
computer graphics provided software engineers with
enough information to construct systems that would be
applicable to a wide array of visualisation problems. The
best example of that would be a graphics engine, as a
part of a game engine. A graphics engine (for example:
Unreal Engine, Source, Frostbite) is a visualisation
system that is developed and tuned to a specific subset
of applications – game genres. Common visualisation
problems are solved once in an efficient way in a
graphics engine and that facilitates higher production
speed for subsequent projects that a game development
company may take. Another good example of a
visualisation system can be Computer-Aided Design
(CAD) systems (for example: AutoCAD, SketchUp,
Archicad). These also solve common problems, but in
the areas of engineering and architecture. The major
difference of visualisation system layer with application
layer, is that visualisation system plays the role of
middleware, and each specific visualisation application
problem has to evaluate and choose whether any existing
visualisation system can help with the solution or not.
None of the visualisation systems are applicable to all
possible applications.

Graphics API layer is the most standardised layer
in the technological stack. The API is normally
represented by operating system drivers and specialised
graphics libraries. Of which, the most prominent are:
DirectX, OpenGL and Vulkan. These libraries do the
mediation work between software and hardware within
an operating system, which includes translation of
application intent into graphics hardware commands,
and control and execution of the rendering process. The
development of the graphics libraries is substantially
slower than visualisation systems, as they heavily
depend on architecture of graphics hardware, and when
the hardware updates, the libraries have to change
accordingly. Graphics API represents a common

79

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

language that graphics hardware and software talk to
each other, that is why there is so few implementations
of it.

Graphics hardware is the base layer in the
technological stack of computer graphics. It consists of
various specialised hardware components that perform
rendering. Most notable form of graphics hardware is
graphics cards (for example: NVIDIA GeForce, AMD
Radeon). A graphics card contains a dedicated Graphics
Processing Unit (GPU), which runs a special algorithm
called graphics pipeline. In a similar manner with
visualisation systems, graphics hardware accumulates
common patterns and solutions to common visualisation
tasks coming from applications. And the changes then
propagate via graphics API up, towards visualisation
systems and applications.

Despite all the successes that computer graphics has
enjoyed so far, there is one problem that is growing with
each new feature and every new improvement: the
complexity of the technological stack. In this paper we
will analyse the developmental milestones of the
technological stack, highlight the changes and the
reasoning behind them. This will help with
understanding of the technology in its current state and
possibly give ideas for further development.

II. METHOD OF ANALYSIS

In this paper we will use a model for historical
analysis that is based on the technological stack
described earlier. We will look at three separate actors:
graphics hardware, graphics API, and applications
which is a combination of application and visualisation
system layers from the technological stack.

Graphics hardware, graphics API and applications
relate to each other in the manner depicted in Fig. 1. The
relationship between the actors is cyclical and flows in
one direction, with arrows pointing at the actors the
development of which is informed by the source of the
arrow. Graphics hardware development is informed by
the nature and requirements of the applications, graphics
API reflects the structure and capabilities of the graphics
hardware, and applications can only do as much as it is
possible with a certain API.

Of course, there is also external input into this
system, for instance, graphics hardware is not being
developed in a complete isolation and depends on the
current state of art in chip manufacturing and related
improvements in technologies. Applications are also
influenced by the ideas of business products, or
advances in a scientific or engineering thought.
Graphics API may be influenced by competing
technologies or general evolution in software
development techniques. But for our purpose, a
simpler model will be enough.

With every turn of the relationship cycle, the
components change and improve. We identified DirectX
API [1] versioning as a representative timeline of the
stepping stones that graphics technologies have taken on
the way, and in the next section we will begin with the
first version.

III. ANALYSIS

A. DirectX 1 (GameSDK) – 1995

First GPUs were pretty simple, and were mostly
concerned with 2D image processing and displaying.
This was already a good starting point, since it
introduced a separation of duties within a single
machine: general CPU did not have to bother with
graphical tasks consisting mostly in copying large
buffers of data from one memory location to another.

Fig. 1. Actors’ relationship cycle

In a similar vein, DirectX 1 only contained a library
called DirectDraw, dedicated specifically to the work
with 2D graphics. This library unified and abstracted the
work with video memory, so that the users would not
need to bother about the kind of hardware their
applications were running on. This technique was called
Hardware Abstraction Layer (HAL).

If application required 3D capabilities, it was mostly
on its own, all geometry preparation, including
transformation and projection had to be performed by
the CPU, and then passed to the graphics hardware via
API. But even at this early stage, DirectDraw provided
access to double buffering and Z-buffer support, which
are essential features to this day.

B. DirectX 2 – 1996

Voodoo 3dfx graphics acceleration card [2] was a
major step in development of what has become known
as graphics pipeline. The card implemented the
rasterisation algorithm and relied on the presence of
another video card in the system for 2D output.
Rasterisation was another essential step on the way to
the true 3D rendering, but transformation and projection
still had to be done on the CPU.

DirectX 2 had extensively improved capabilities of
DirectDraw, and introduced a library to work with 3D
graphics: Direct3D. Direct3D in DirectX 2 could be used
in two separate modes with distinct APIs: Immediate

80

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Mode (IM) and Retained Mode (RM). Retained Mode
was designed for high-level graphics programming, and
included functionality and primitives for construction
and management of 3D scenes containing hierarchies of
objects. RM contained methods for camera
manipulation and animations and was built on top of
Immediate Mode. Immediate Mode on the other hand,
was a low-level programming interface and required
good understanding of the intricacies of graphics
programming. This demonstrates that graphics
development complexity was recognised even at these
early stages.

Even though graphics hardware did not support
lighting, transformation and projection at the time,
DirectX implemented the missing parts of the
rasterisation algorithm in software, and provided
specialised components in the form of Transform,
Lighting and Raster modules.

C. DirectX 3 – 1996

DirectX 3 did not have any improvements to
DirectDraw or Direct3D, and only updated other
components of the SDK, such as DirectSound,
DirectInput and DirectSetup.

It should also be noted that DirectX version 4 was
skipped and the next released version became DirectX 5.

D. DirectX 5 – 1997

In 1997 graphics cards manufacturers introduced a
new data transfer interface in their products: Accelerated
Graphics Port (AGP) [3]. This data transfer bus
significantly increased the rate at which graphics data
could be passed to graphics hardware. That, in turn,
helped to increase the size of 3D scenes and quality of
textures. In addition to this, graphics hardware added
support of multitexturing – an ability to use multiple
texture maps during single surface rasterisation. This
feature had opened a way to many visualisation
techniques, such as bump mapping, specular mapping,
prebaked lighting and so on.

When it was introduced, Direct3D Immediate Mode
required programmers to record the instructions that
they wanted to pass to graphics hardware in a special
data structure called Execute Buffer. Execute Buffers
were pretty low level and required a fair amount of
boilerplate code when operated. For this reason, DirectX
5 added a more convenient set of instructions in addition
to Execute Buffers: Draw Primitive commands.
Direct3D Retained Mode was expanded with a number
of interfaces for animation and managing geometry with
variable levels of details.

With the new improvements of the hardware and
API, applications could render scenes with textured
materials more efficiently and the selection of available
visual effects have increased.

E. DirectX 6 – 1998

In DirectX 6, DirectDraw did not have any
significant changes, but it increased the number of
methods that simplified working with graphics
hardware. Direct3D Immediate Mode improved its
performance and added support for new hardware
features: single-pass multiple texture blending, texture
cache management, vertex buffers, and many others.
Direct3D Retained Mode was incrementally improved
without any noteworthy changes.

Graphics application were provided with a better
selection of tools as the result of these changes; however,
the more basic capabilities were still quite primitive, for
instance, lighting and transformation was still performed
by CPU, and this prompted the next big challenge for the
hardware.

F. DirectX 7 – 1999

In 1999 graphics cards got a new module that
extended the capabilities of the hardware graphics
pipeline: a Transformation and Lighting module (T&L)
[4]. This change allowed to remove from the CPU the
need of performing geometry transformation (projection
from 3D coordinate system onto 2D screen coordinates),
and per-vertex lighting calculations. Now, graphics
hardware started processing the true 3D data.

The new features of Direct3D included: T&L
support, environment mapping with cubic textures,
geometry blending, device state blocks. Additionally,
Execute Buffers support was ceased, and draw primitive
methods have become the only way of pushing the work
to graphics hardware.

Direct3D Retained Mode was completely removed
from DirectX SDK. The reason why it was done can be
speculated that a decision was made to concentrate
efforts on a single component of the library – Immediate
Mode, – which would be better suited as a low-level,
high-performance interface to graphics hardware.
Retained Mode could not be made generic enough, and
could not play the role of a general graphics engine. In
lieu of removed Direct3D RM, DirectX introduced a
special Direct3DX Utility Library (D3DX) that
contained a wide selection of functions that helped with
management of Direct3D interface objects, provided
functions for loading graphical assets from files, and a
range of 3D math functions. This made Direct3D a more
complete package for graphics programming.

These improvements to hardware and API had
increased performance of rendering applications. But
there was another problem looming in the background:
graphics pipeline as it was, was implemented in a
particular manner, called Fixed Function Pipeline (FFP)
[5]. Which meant, that the implementation of the
pipeline algorithm was static, and the data passing

81

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

through was transformed on the way using fixed
functions that could only be changed by special state
values. FFP was a significant limiting factor in the
generality of the pipeline: application developers were
coming up with all sorts of possible visual effects that
simply could not be implemented with the fixed
functions.

G. DirectX 8 – 2000

The problem of FFP was solved with the introduction
of programmable pipeline technology in graphics
hardware. Programmable pipeline introduced two new
stages into the process as a replacement for
Transformation and Lighting and multitexturing
modules – Vertex and Pixel Shaders [6]. Shader is a
special small program that is executed by GPU at certain
stages of data processing, and is applied to specific types
of primitives: vertices for vertex shaders and fragments
(or pixels, loosely) for pixel shaders. Shader programs
were written at first in a version of assembly language
that could be compiled in the runtime by application and
uploaded to graphics hardware. Later, however, high
level languages were developed to simplify shader
programming, such as High-Level Shader Language
(HLSL). HLSL later developed in a number of stages
defined by Shader Model version, thus the first
implementation was using Shader Model 1.

In DirectX 8, DirectDraw was completely merged
into Direct3D since there was a little need in maintaining
a separate library for display device management. The
new combined component was named DirectX
Graphics, and it included support of programmable
pipeline and implemented a number of features,
including: multisampling, point sprites, 3D volumetric
textures, higher-order surface primitives,
multiresolution geometry, vertex blending. Another
useful addition was introduction of resources and the
ability to manage where graphics data should be located
in the memory, which gave applications better control
over the data flow.

Direct3DX library was significantly expanded with
functions that support working with meshes, geometry
skinning (vertex blending), functions to assemble
shaders, and a specialised Effect interface that
encapsulated some of the common work of defining
graphics pipeline using declarative syntax.

H. DirectX 9 – 2002

DirectX 9 had become a standard for Windows
graphics development for many years to come. Even
after the following versions were released, DirectX 9
was still in use. It can be said that this version
encapsulated most of the requirements posed by
applications, and some significant changes were needed
on the application side in order to facilitate further
development.

There were no radical changes in DirectX 9
compared to DirectX 8. All of the previous capabilities
of the API were enhanced and improved. The API model
underwent minor iterative version releases, which
supported further extensive development in graphics
hardware. HLSL was updated to Shader Model 2 and 3.

For the following years, graphics hardware, graphics
API and applications were developing in an extensive
manner, improving performance and increasing the
number of supported resources.

I. DirectX 10 – 2006

In DirectX 10, graphics pipeline model was changed
fundamentally. Legacy features of DirectX 9, like fixed
function pipeline, were stripped off. And in general, the
API had been upgraded and made cleaner. The
following functional improvements were made: added a
new programmable shader stage – geometry shaders
(Shader Model 4); ability to output vertex data from the
pipeline; pipeline state was organised into 5 immutable
objects that significantly reduced loss of performance
due to state switching; improved resource access;
changed API architecture to have a layered runtime; and
many others.

A drastic change like that meant that a lot of
applications created using older versions of API could
not be ported easily to use the new API. That throttled a
widespread adoption of DirectX 10 for some time.

J. DirectX 11 – 2009

It had become clear at the time that programmable
pipeline was the appropriate technology of choice for
graphics hardware, since it combined great performance
with a lot of flexibility necessary for applications. Thus,
the main ways of graphics hardware development were
to improve on the capabilities of shader stages and
introduction of new ones.

DirectX 11 kept the architecture model of its
predecessor. It expanded shaders to Shader Model 5 with
addressable resources and resource types, subroutines,
new types of shaders: compute, hull and domain. Two
important improvements were introduced in DirectX 11:
already mentioned compute shaders and multithreading.
Compute shaders were a big change in graphics
hardware world, they made it possible to execute general
parallel algorithms very efficiently. Afterall, that was the
whole purpose of graphics hardware from the beginning
– to process large amounts of data in the most efficient
manner. Now, graphics hardware had discovered a new
use, and no longer was locked just to rendering.
Multithreading support, on the other hand, was a big win
for the rendering itself. Up until that moment, rendering
processes were structured as a single conveyor belt with
a single global state, which limited any attempts at
parallel execution. And with GPUs hitting the limits of

82

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

single core improvements, it meant that some serious
change was needed in order to unlock the next
performance boost, and that change was multithreading.

From the applications perspective, there was a split:
simpler applications that did not need cutting edge
features were still using DirectX 9, but large players
recognised and promoted DirectX 11 further. And the
next version of DirectX was a conclusion of this
endeavour, so far.

K. DirectX 12 – 2015

DirectX 12 had made the next large update to the
architecture of the API. Compared with DirectX 11, the
new version sported [7]: vastly reduced CPU overhead,
up to 20% improvement in GPU efficiency and cross-
platform development across Windows 10 devices. This
came at a cost of the API being made lower-level,
without attempting to abstract hardware capabilities any
longer, it instead gave control over the hardware to
graphics programmers.

The API had become thinner, and a lot of
opportunities were opened for performance optimisation
in relation to concrete visualisation applications. This,
however, had significantly increased the entry level, and
API documentation [7] explicitly said that DirectX 12
was designed for advanced graphics programmers. In a
way, the API had become closer to the first version –
DirectX 1. The API removed multiple ways it previously
used to synchronise data and state between CPU and
GPU processes, now all the work for resource
management and command execution had to be
performed by the application. Work submission was
made truly parallel with introduction of a new model
based on command lists. Those command lists may be
reminiscent of Execute Buffers in the early versions, but
in DirectX 12 they represented a completely
independent executable workload for hardware that did
not share a state with the rest of the computation, so it
could be constructed and submitted in parallel in a
stateless manner.

IV. CONCLUSION

The development arc of the graphics hardware,
graphics API and applications has been dramatic in the
past 25 years. The API started from low-level, attempted
to add high-level abstractions, but eventually gave up
and now it mirrors the hardware architecture. The

hardware tried implementing rasterisation algorithm in a
static manner, but it was proven not flexible enough to
support the variety of applications, so the programmable
pipeline was developed and enhanced. Applications
started small in numbers, but then the number of them
exploded, and after introduction of newer architectural
models, a split appeared between simpler and more
complex systems. Nowadays, DirectX 9 has become
outdated, and it is harder for graphics programmers to
base new applications purely on graphics APIs. In game
development, for instance graphics engines have
become very prominent since their development teams
had enough expertise to utilise the power of the new API
fully.

In our previous works we discussed the problem of
complexity of the graphics pipeline and API [8, 9, 10].
Our approach to extension of the pipeline with higher-
level primitive processing can make graphics API better
suited for use in complex graphics application going
forward.

REFERENCES

[1] Microsoft, DirectX SDK Documentation for versions 1–12,
1995–2015.

[2] “Rise of 3dfx”, https://vintage3d.org/3dfx1.php

[3] Intel Corporation, “Accelarated Graphics Port Interface
Specification”, 1996.

[4] NVIDIA Corporation, “Transform and Lighting”, Technical
Brief, http://developer.download.nvidia.com/assets/gamedev/
docs/TransformAndLighting.pdf

[5] David B. Kirk, Wen-mei W. Hwu, Programming Massively
Parallel Processors, 2nd ed., Morgan Kaufmann, 2013, pp. 23–39.

[6] Ron Fosner, Real-Time Shader Programming, Morgan
Kaufmann, 2003, pp. 88–111.

[7] Microsoft, DirectX 12 Programming Guide,
https://docs.microsoft.com/en-us/windows/win32/direct3d12/
what-is-directx-12.

[8] V. Krasnoproshin, D. Mazouka, “Frame Manipulation
Techniques in Object-Based Rendering” Communications in
Computer and Information Science, vol. 673: “Pattern
Recognition and Information Processing”, Springer, 2017,
pp. 97–105.

[9] V. Krasnoproshin and D. Mazouka, “Graphics Pipeline
Evolution Based on Object Shaders” Pattern Recognit. Image
Anal. 30, 2020, pp. 192–202, https://doi.org/10.1134/
S105466182002008X

[10] V. Krasnoproshin, D. Mazouka, “Data-Driven Method for High
Level Rendering Pipeline Construction”, Neural Networks and
Artificial Intelligence. Communications in Computer and
Information Science, vol. 440, 2014, pp. 191–200.

83

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

