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Abstract. Immunohistology fluorescence image analysis 

is an important method for cancer diagnosis. With the 

widespread application of convolutional neural networks in 

computer vision, segmentation of images of cancer cells has 

become an important topic in medical image analysis. 

Although there are many publications describing the 

success in application of deep learning models for 

segmentation of different kind of histology images, the 

universal algorithm is still not developed. The image 

preprocessing consisting in splitting images in smaller parts 

and normalization is important in deep learning especially 

when the training set is of a limited size. In this study, we 

compared several approaches to create the training set of a 

sufficient size while having a limited number of labeled 

whole slide immunohistology images of cancer cells. Also, 

we explored different normalization methods.  

Keywords: CNN, medical image analysis, image 

preprocessing, image segmentation, nucleus of cancer cell, 

U-Net 

I. INTRODUCTION

Convolutional neural networks (CNN) have 
gradually begun to be applied in the field of image 
analysis since they achieved a huge breakthrough in the 
field of handwritten font recognition [1]. The 
outstanding performance of CNN in the ImageNet 
competition shows that it has great potential in image 
analysis fields such as image feature extraction and 
image classification. At present, CNN has widely been 
applied also in medical image segmentation. The U-Net 
[2] architecture, specially developed to segment objects
like cell nucleus on biomedical images, is widely used
in medical image segmentation. The skip connections
introduced in U-Net helps to merge the features of
different scales that enhance its performance. For
example, Neha Todewale successfully applied U-Net to
perform segmentation of mammogram images [3].
Ajinkya Jawale et al. made segmentation of the brain
tumor images using U-Net [4]. Adnan Saood et al.
realized COVID-19 lung CT image segmentation and
comparative analysis using U-Net [5]. Other CNN

models, such as VGGNet [6], ResNet [7], FCN [8], 
Inception [9], all based on ideas of deep learning, were 
developed in the past ten years for image segmentation. 
Most of them has been successfully applied also in a 
field of biomedical image segmentation and 
classification [10]. We selected U-Net for our study 
because having a relatively simple architecture it still 
shows very good performance. 

The purpose of our research is to segment cell nuclei 
on the fluorescence images of cancer tissue slices. Cancer 
tissue slice, stained with fluorescent agents accordingly to 
a certain protocol, is observed by the fluorescence 
confocal microscopy to obtain a three-channel color 
picture. Then the attempt to segment cells (nuclei and 
cytoplasm) on these images is made for a subsequent 
quantitative and qualitative pathological analysis.  

The segmentation of objects like nucleus or 
cytoplasm on biomedical images is a pixelwise binary 
classification problem. The goal is to assign each pixel 
either to the class of pixels that forms the nuclei area or 
not. As a step of image segmentation using neural 
networks, the data preprocessing has a significant 
impact on the segmentation results. The main purpose 
of image preprocessing is to eliminate irrelevant 
information and enhance the detectability of useful 
information (represented by the pixels or features in the 
CNN terms) to the greatest extent, thereby improving 
the accuracy of cell segmentation [11]. For biomedical 
images segmentation, preprocessing steps usually 
require cropping, splitting in smaller parts, 
regularization, intensity enhancement and normalizing 
to the range [0, 1] and so on [12]. Among them, due to 
the uneven distribution of cells in biological tissues, 
preprocessing steps such as the selection of cell nucleus 
regions also affects the ability to obtain correct 
segmentation results. 

In the cancer pathology analysis, one usually works 
with samples of relatively small sizes. High diversity of 
cancer cases does not allow to get a large set of 
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histological images of desired similarity. Another 
problem is a labeling of target objects on images. When 
the task is a segmentation of cells or nuclei on images, 
the person who does labeling must be an expert in both 
the cancer diagnosis and in the microscopy. Fortunately, 
each whole slide immunohistology image contains 
hundreds of cells (target objects for the segmentation). 
It opens the perspective for enhancing the training set 
by splitting the input images into a number of small 
images (patches). Simple splitting images into not 
overlapped patches, splitting with overlap (sliding), 
random extraction of patches are ways to enhance the 
training set [10]. 

To fulfil this task one question is naturally arising, 
what size of a patch is optimal for the segmentation of 
nuclei of cancer cells of a certain average size? Also, it 
is interesting to examine different strategies of the patch 
extraction in order to increase the size of the training set. 
One has to take into account that it is impossible to 
increase the size of the training set infinitively by a 
simple extraction more and more overlapped patches. 
Even in a case of using abundant data augmentation the 
segmentation will suffer from overfitting. In addition, it 
is interesting to know how the image preprocessing, like 
normalization and standardization, influences the 
segmentation results. 

Therefore, the goal of this study is to find the most 
effective algorithm of preprocessing of immunohistology 
fluorescence images in the task of segmentation of nuclei 
of cancer cells.  

II. MATERIALS AND METHODS

In this study we are performing the segmentation of 
fluorescence images of the breast tumor tissue slices. 
The images where obtained using Nikon TE200 epi-
fluorescent inverted microscope equipped with the 
Photometrics 300 series CCD camera at 10x 
magnification and stored in RGB color system. The size 
of the images is 2048 × 2048 pixels in each of the three 
channels, the resolution is 0.2 µm / pixel, or 5 µm. 

The protein estrogen receptor was used as an cancer 
indicator [13]. In contrast to healthy cells, a protein 
cytokeratin appears in the cytoplasm of cancer cells. 
This protein is labeled with cyanine dye Cy3 and 
registered in the green color channel of the image. To 
label all nuclei, the 4,6-diamidino-2-phenylindole 
dihydrochloride (DAPI) dye was used. Its fluorescence 
was recorded in the blue channel. The cyanine dye Cy5 
(recorded in the red channel of the image) was used to 
label the estrogen receptor, which is located primarily 
in the nuclei of cancer cells. Accordingly, two dyes, Cy5 
and Cy3, are markers of cancer cells.  

Nine experimental images were labeled by experts 
initially semi automatically using CellProfiler 

(https://cellprofiler.org/) then manually. Labeled 
images (ground truth) are the binary images, where 
pixels of nucleus of cancer cells were set to 1.  

TABLE I. LAYER STRUCTURE OF U-NET 

Encoder layers Decoder layers 

3x3 Conv+ELU, F=16 2x2 ConvTranspose(S=2), F=128 (V) 

Dropout=0.1 3x3 Conv+ELU, F=128 

3x3 Conv+ELU, F=16 (I) Dropout=0.2 

MaxPool (S= 2) 3x3 Conv+ELU, F=128 

3x3 Conv+ELU, F=32 2x2 ConvTranspose(S=2), F=64 (VI) 

Dropout=0.1 3x3 Conv+ELU, F=64 

3x3 Conv+ELU, F=32 (II) Dropout=0.2 

MaxPool (S= 2) 3x3 Conv+ELU, F=64 

3x3 Conv+ELU, F=64 2x2 ConvTranspose(S=2), F=32 (VII) 

Dropout=0.2 3x3 Conv+ELU, F=32 

3x3 Conv+ELU, F=64 (III) Dropout=0.2 

MaxPool (S= 2) 3x3 Conv+ELU, F=32 

3x3 Conv+ELU, F=128 2x2 ConvTranspose(S=2), F=16 (VIII) 

Dropout=0.2 3x3 Conv+ELU, F=16 

3x3 Conv+ELU, F=128 (IV) Dropout=0.1 

MaxPool (S= 2) 3x3 Conv+ELU, F=16 

Middle layers 1x1 Conv+Sigmoid, F=1 

3x3 Conv+ELU, F=256 

Dropout=0.3 

3x3 Conv+ELU, F=256 

Abbreviations in the table: S – stride, F – number of 
filters. The following layers were concatenated: (I)-
(VIII), (II)-(VII), (III)-(VI), (IV)-(V). 

The U-Net architecture, specially developed for a 
segmentation of biomedical images and showed good 
performance, was selected in our study. It is 
symmetrical neural net and has five sets of 
convolution/deconvolution layers, see Table I (in 
TensorFlow notation). 

Our realization of U-Net was based on the 
architecture that shown nice results in the 2018 Data 
Science Bowl Kaggle competition and available at 
GitHub (https://github.com/dubeyakshat07/Cell-
Nuclei-Image-Segmentation-using-U-Net). The model 
has 1,941,105 learning parameters. We used binary 
cross entropy as the loss function and intersection over 
union (IOU, known also as Jaccard similarity 
coefficient) calculated at the threshold 0.5, as the 
segmentation metric. The smaller the loss value, the 
better the learning effect. The larger the IOU metric – 
the better the segmentation (closer to the ground truth). 

Taking into account the wide range and scalability 
of the application, we used a Python language 
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environment to build the U-Net model, and selected the 
Jupyter Notebook to run and test the code. The main 
model components were implemented through the 
Keras library (TensorFlow kernel). Augmentation was 
performed using the Albumentations library 
(https://albumentations.ai/) and calculation of the loss 
function and the evaluation metric was done using the 
Segmentation models library (https://segmentation-
models.readthedocs.io).  

III. RESULTS AND DISCUSSIONS

As we have only 9 labeled images (of size 
2048 × 2048 px.) the main goal at deep learning is to 
increase the size of the training set. The rough 
estimation of the nuclei size of 1250 ± 800 pixels 
corresponds approximately to the circle with radius of 
20 px. It allows us to split the input images into a set of 
much smaller sizes – patches, thus defining a training 
set of optimal size. The dimension of the patch size is 
not trivial to guess because the segmentation results are 
obviously depended on how close to the ground truth is 
the predicted border of a nucleus. If we select small 
patch window the learning process will definitely suffer 
from the fact that probably most of nuclei will be 
located not in the center of the window, but over their 
borders. In opposite case we can get just rough 
estimation of the nuclei area. The answer to the question 
how many times an overlapped part of the image can be 
present in the training set is also not evident. The 
overfitting makes useless all our work otherwise. 

Therefore, to answer these questions we initially 
performed the segmentation of nuclei at different patch 
sizes and extraction strategies. At the second step we 
have studied several methods of preprocessing the 
patches such as image histogram equalization, 
standardization and normalization to the range [0, 1].  

The U-Net model used in our study is described in 
details in the Materials and Methods section. We 
selected a simple augmentation including random 90-
degree rotation, horizontal flipping and transposing. 
Although we utilized simple augmentation, it can 
effectively prevent overfitting. The intersection over 
union (at level 0.5) metric was set as a measure of 
accuracy of the segmentation. Seven images were used 
for training, one image for validation and one for 
testing. The same algorithm of preprocessing was 
applied to both training and validation images. The 
empty patches (the number of pixels less than 150) were 
removed from the training set. Number of epochs was 
set to 30. Earlier stopping callback with patience = 8 
was used in the training process. 

The first task is to obtain a sufficiently large training 
set and to avoid overfitting. We started with a patch size 
of 512 × 512 and decreased it to 64 × 64. The latter case 
gave much worse results, probably because the most 

nuclei crossed borders of patches, therefore we did not 
include it into the analysis. More specifically we studied 
the following cases: 1) simple splitting into patches of 
the size 128 × 128 without overlap; 2) splitting into 
patches of the size 128 × 128 with overlap in 64 px. (1/2 
of the patch size); 3) splitting into patches of the size 
256 × 256 with overlap in 128 px. (1/2 of the patch 
size); 4) random cropping 128 × 128 patches 8 times 
after intermediate splitting into 256 × 256 subimages; 
5) splitting into patches of the size 512 × 512 with
overlap in 128 px. (1/4 of the patch size). The side
lengths of patches are therefore 128, 256, and
512 pixels. At the case 1) we got the training set of
1576 images. A at the case 4) we got the training set of
12064 images.

The values of the loss function and the IOU metric 
on the test set are summarized in the TABLE II. Other 
relevant information about the number of patches and 
the total number of pixels in the training set as well as 
the batch size, number of steps per epoch is also 
summarized there. The values of the loss function and 
IOU metric for 30 CNN epochs, obtained for both 
training and validation data, are shown in Fig. 1.  

Fig. 1. Values of the loss function and IOU metric for 30 CNN 

epochs, after cases 1-5 of  patch extraction methods. Color 

coding:| case 1 – red, case 2 – blue, case 3 – green, 

case 4 – black, case 5 – magenta 

In spite of the fact that in the case 5 we got the best 
metric value, we conclude the case 4 with random 
extraction of patches of a size 128 × 128 to be the best. 
This conclusion came from the visual inspection of the 
segmentation results (data not shown). Here we use a 
simple but effective method to increase the size of the 
training set. In this case, patch overlap is useful, but 
when the number of patches reaches a certain level, then 
overfitting is occurring. When the number of patches is 
at the largest, we get the best results. In contrast, the 
maximum number of pixels is achieved in the case 5. 
One may come with a conclusion that if augmentation 

170

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :   
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.  
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021  
This paper is legally taken from PRIP'2021 Conference Proceedings. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).



is performed then as larger the training set the better the 
results despite of the presence of overlapping areas of 
the images. To prove or reject this conclusion we did an 
experiment (data not shown) where we selected the case 
2 but increased virtually twice (because of 
augmentation) the training set by selection of larger 
number of steps per epoch to get the same number of 
patches in the training process. We got slightly worse 
value of the IOU metric (= 0.834). Thus, the random 
extraction of patches is better. We also tried the case 
with random extraction of four patches from 256 × 256 
sub images. The result was worse than at the simplest 
case 1. Therefore, we proved that the random cropping 
is a powerful method but only when enough number of 
patches is extracted to obtain a complete coverage of the 
image. Also, we came to the conclusion that the patch 
of the size 128 × 128 px. is optimal for the segmentation 
of nuclei with the average radius of about 20 px.  

Fig. 2. Values of the loss function and IOU metric for 30 CNN 

epochs after different methods of patch normalization. Color 

coding:  case 1 – black, case 2 – red, 

case 3 – magenta, case 4 – blue. 

In the second step of our study, we picked out the 
case 4 of randomly selected patches with the side length 

of 128 pixels. The following methods of image 
normalization and standardization were studied: 1) raw 
data (without normalization); 2) normalization to the 
range [0, 1], where 1 corresponds to the maximum pixel 
intensity in the patch; 3) centering and scaling; 
4) normalization to the range [0, 1] by initial patch
histogram equalization then division to 255.

Surprisingly we obtained very similar results. The 
best method was the image histogram equalization (see 
Table III and Fig. 2).  

The method of histogram equalization effectively 

increases the contrast of the cell nucleus, therefore 

supports its better segmentation. However, 

differences in the IOU metric are very small. 

Therefore, in our case, image normalization does not 

play a key role (see Table III). 

IV. CONCLUSION

The preprocessing of input images plays important 
role in the deep learning. Having only 9 whole slide 
labeled images of the size 2048 × 2048 pixels we were 
able to get satisfactory results in the segmentation of 
nuclei on the fluorescence images of the cancer cells of 
the breast tumor. We concluded that the random 
cropping is a powerful method for increasing the 
training set when the number of patches is high enough 
to obtain a complete coverage of the input image. The 
simple splitting of the image with overlap may be 
sufficient if the augmentation is used. Also, we came to 
the conclusion that the patch of the size 128 × 128 px. 
is optimal for the segmentation of nuclei with the 
average radius of about 20 px.  

In our numerical tests the image normalization does 
not play a key role. Histogram equalization with 
subsequent normalization to the range [0, 1] 
demonstrated the best result. The method of histogram 
equalization effectively increases the contrast of the cell 
nucleus and thus supports the better segmentation. 

TABLE II. RESULTS OF SEGMENTATION AFTER DIFFERENT METHODS OF PATCHES CREATION 

Parameters and 

metrics 

Methods of patches creation 

Splitting to 

128×128 

without 

overlap 

Splitting to 

128×128 with 

overlap in 64 px 

Splitting to 

256×256 with 

overlap in 128 px 

Random cropping 

128×128 8 times after 

intermediate splitting into 

256×256 images 

Splitting to 

512×512 with 

overlap in 128 px 

Total number of 

patches 
1576 5939 1508 12064 1177 

Total number of 

pixels in all patches 
25,821,184 97,304,576 98,828,288 197,656,576 308,543,488 

Batch_size 64 64 24 32 16 

Steps per epoch 25 93 63 377 74 
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Parameters and 

metrics 

Methods of patches creation 

Splitting to 

128×128 

without 

overlap 

Splitting to 

128×128 with 

overlap in 64 px 

Splitting to 

256×256 with 

overlap in 128 px 

Random cropping 

128×128 8 times after 

intermediate splitting into 

256×256 images 

Splitting to 

512×512 with 

overlap in 128 px 

Loss function 0.222 0.188 0.156 0.156 0.157 

IOU (th=0.5) 0.786 0.837 0.837 0.839 

TABLE III. RESULTS OF SEGMENTATION AFTER DIFFERENT METHODS OF PATCHES NORMALIZATION 

Parameters 

and metrics 

Methods of patches normalization 

Without 

normalization 

Division by max value of 

pixel intensity in a patch 
Standardization Histogram 

equalization 

Loss function 0.159 0.154 0.160 0.154 

IOU (th=0.5) 0.837 0.838 0.838 0.840 
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